Spaces:
Runtime error
Runtime error
Create florence_encoder.py
Browse files
llava/model/multimodal_encoder/florence_encoder.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, AutoProcessor, AutoModelForCausalLM
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class FlorenceVisionTower(nn.Module):
|
| 10 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
| 11 |
+
super().__init__()
|
| 12 |
+
|
| 13 |
+
self.is_loaded = False
|
| 14 |
+
self.vision_tower_name = vision_tower
|
| 15 |
+
|
| 16 |
+
if not delay_load:
|
| 17 |
+
self.load_model()
|
| 18 |
+
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
| 19 |
+
self.load_model()
|
| 20 |
+
else:
|
| 21 |
+
self.load_model()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def load_model(self, device_map=None):
|
| 25 |
+
if self.is_loaded:
|
| 26 |
+
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
| 27 |
+
return
|
| 28 |
+
|
| 29 |
+
self.image_processor = AutoProcessor.from_pretrained(self.vision_tower_name, trust_remote_code=True)
|
| 30 |
+
self.vision_tower = AutoModelForCausalLM.from_pretrained(self.vision_tower_name, trust_remote_code=True).to(torch.bfloat16)
|
| 31 |
+
self.vision_tower.requires_grad_(False)
|
| 32 |
+
|
| 33 |
+
self.is_loaded = True
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@torch.no_grad()
|
| 37 |
+
def forward(self, images):
|
| 38 |
+
|
| 39 |
+
## hard code for the task prompt
|
| 40 |
+
# task = [
|
| 41 |
+
# 'Describe in detail what is shown in the image.',
|
| 42 |
+
# 'What is the text in the image?',
|
| 43 |
+
# 'Locate the objects in the image, with their descriptions.',
|
| 44 |
+
# ]
|
| 45 |
+
|
| 46 |
+
task_ids = torch.tensor([
|
| 47 |
+
[0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2, 1],
|
| 48 |
+
[0, 2264, 16, 5, 2788, 11, 5, 2274, 116, 2, 1, 1, 1, 1],
|
| 49 |
+
[0, 574, 22486, 5, 8720, 11, 5, 2274, 6, 19, 49, 24173, 4, 2]
|
| 50 |
+
]).to(device=self.device)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
generated_ids, image_feature, encoder_last_hidden_state = self.vision_tower.generate(
|
| 55 |
+
input_ids=task_ids,
|
| 56 |
+
pixel_values=images,
|
| 57 |
+
max_new_tokens=1,
|
| 58 |
+
do_sample=False,
|
| 59 |
+
num_beams=1,
|
| 60 |
+
)
|
| 61 |
+
return image_feature, encoder_last_hidden_state
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@property
|
| 65 |
+
def dummy_feature(self):
|
| 66 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
| 67 |
+
|
| 68 |
+
@property
|
| 69 |
+
def dtype(self):
|
| 70 |
+
return self.vision_tower.dtype
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def device(self):
|
| 74 |
+
return self.vision_tower.device
|
| 75 |
+
|
| 76 |
+
@property
|
| 77 |
+
def config(self):
|
| 78 |
+
if self.is_loaded:
|
| 79 |
+
return self.vision_tower.config
|
| 80 |
+
else:
|
| 81 |
+
return self.cfg_only
|
| 82 |
+
|
| 83 |
+
@property
|
| 84 |
+
def hidden_size(self):
|
| 85 |
+
return self.config.hidden_size
|
| 86 |
+
|
| 87 |
+
@property
|
| 88 |
+
def num_patches_per_side(self):
|
| 89 |
+
return self.config.image_size // self.config.patch_size
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def num_patches(self):
|
| 93 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|