joaogante's picture
joaogante HF staff
Update app.py
7187f3b verified
import spaces
import gradio as gr
import time
from threading import Thread
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
model_id = "meta-llama/Llama-3.1-8B"
assistant_id = "meta-llama/Llama-3.2-1B"
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id).to(device=model.device, dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def run_generation(user_text, use_assistant, temperature, max_new_tokens):
if temperature < 0.1:
do_sample = False
else:
do_sample = True
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer([user_text], return_tensors="pt").to(model.device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
assistant_model=assistant_model if use_assistant else None,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=0.95,
temperature=float(temperature),
top_k=50,
eos_token_id=-1, # ensures `max_new_tokens` new tokens are always generated, can't reach EOS
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
start = time.time()
t.start()
# Pull the generated text from the streamer, and update the model output. Return the model output and time
# spent so far.
model_output = ""
for new_text in streamer:
model_output += new_text
time_so_far = time.time() - start
tokens_so_far = tokenizer(model_output, return_tensors="pt").input_ids.shape[1]
yield [model_output, round(tokens_so_far/time_so_far, 2)]
def reset_textbox():
return gr.update(value='')
with gr.Blocks() as demo:
gr.Markdown(
"# 🤗 Assisted Generation Demo\n"
f"- Model: {model_id} (4-bit quantization)\n"
f"- Assistant Model: {assistant_id} (FP16)\n"
"- Recipe for good speedup: a) >10x model size difference in parameters; b) assistant trained similarly; c) CPU is not a bottleneck"
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
value="A sequence: one, two, three, ",
label="Prompt"
)
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
button_submit = gr.Button(value="Submit")
with gr.Column(scale=1, min_width=200):
gr.Markdown("### Generation Settings")
use_assistant = gr.Checkbox(label="Use Assisted Generation", value=True)
max_new_tokens = gr.Slider(
minimum=1, maximum=500, value=100, step=1, interactive=True, label="Max New Tokens",
)
temperature = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05, interactive=True, label="Temperature (0.0 = Greedy)",
)
gr.Markdown("### Tokens per second")
tokens_per_second = gr.Textbox(lines=1, interactive=False, show_label=False)
generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
generate_outputs = [model_output, tokens_per_second]
user_text.submit(run_generation, generate_inputs, generate_outputs)
button_submit.click(run_generation, generate_inputs, generate_outputs)
demo.queue(max_size=16).launch()