Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,11 +8,11 @@ import torch
|
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
9 |
|
10 |
|
11 |
-
model_id = "
|
12 |
-
assistant_id = "
|
13 |
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(model_id,
|
15 |
-
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id).to(device=model.device, dtype=torch.
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
|
18 |
|
@@ -49,9 +49,9 @@ def run_generation(user_text, use_assistant, temperature, max_new_tokens):
|
|
49 |
model_output = ""
|
50 |
for new_text in streamer:
|
51 |
model_output += new_text
|
52 |
-
time_so_far =
|
53 |
tokens_so_far = tokenizer(model_output, return_tensors="pt").input_ids.shape[1]
|
54 |
-
yield [model_output, tokens_so_far/time_so_far]
|
55 |
|
56 |
|
57 |
def reset_textbox():
|
@@ -61,8 +61,8 @@ def reset_textbox():
|
|
61 |
with gr.Blocks() as demo:
|
62 |
gr.Markdown(
|
63 |
"# 🤗 Assisted Generation Demo\n"
|
64 |
-
f"- Model: {model_id} (
|
65 |
-
f"- Assistant Model: {assistant_id} (FP16, ~
|
66 |
"- Recipe for speedup: a) >10x model size difference in parameters; b) assistant trained similarly; c) CPU is not a bottleneck"
|
67 |
)
|
68 |
|
@@ -84,7 +84,7 @@ with gr.Blocks() as demo:
|
|
84 |
temperature = gr.Slider(
|
85 |
minimum=0.0, maximum=2.0, value=0.6, step=0.05, interactive=True, label="Temperature (0.0 = Greedy)",
|
86 |
)
|
87 |
-
gr.Markdown("### Tokens per
|
88 |
tokens_per_second = gr.Textbox(lines=1, interactive=False, show_label=False)
|
89 |
|
90 |
generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
|
|
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
9 |
|
10 |
|
11 |
+
model_id = "Qwen/Qwen2.5-32B-Instruct"
|
12 |
+
assistant_id = "Qwen/Qwen2.5-0.5B-Instruct"
|
13 |
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
|
15 |
+
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id).to(device=model.device, dtype=torch.float16)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
|
18 |
|
|
|
49 |
model_output = ""
|
50 |
for new_text in streamer:
|
51 |
model_output += new_text
|
52 |
+
time_so_far = time.time() - start
|
53 |
tokens_so_far = tokenizer(model_output, return_tensors="pt").input_ids.shape[1]
|
54 |
+
yield [model_output, round(tokens_so_far/time_so_far, 2)]
|
55 |
|
56 |
|
57 |
def reset_textbox():
|
|
|
61 |
with gr.Blocks() as demo:
|
62 |
gr.Markdown(
|
63 |
"# 🤗 Assisted Generation Demo\n"
|
64 |
+
f"- Model: {model_id} (4-bit quant, ~16GB)\n"
|
65 |
+
f"- Assistant Model: {assistant_id} (FP16, ~1GB)\n"
|
66 |
"- Recipe for speedup: a) >10x model size difference in parameters; b) assistant trained similarly; c) CPU is not a bottleneck"
|
67 |
)
|
68 |
|
|
|
84 |
temperature = gr.Slider(
|
85 |
minimum=0.0, maximum=2.0, value=0.6, step=0.05, interactive=True, label="Temperature (0.0 = Greedy)",
|
86 |
)
|
87 |
+
gr.Markdown("### Tokens per second")
|
88 |
tokens_per_second = gr.Textbox(lines=1, interactive=False, show_label=False)
|
89 |
|
90 |
generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
|