Spaces:
Sleeping
Sleeping
File size: 11,530 Bytes
f06b197 7f36089 f06b197 b27a850 7f36089 f06b197 b27a850 7f36089 b27a850 f06b197 b27a850 f06b197 b27a850 f06b197 b27a850 f06b197 7f36089 f06b197 7f36089 f06b197 b27a850 f06b197 b27a850 f06b197 c2b521a f06b197 c2b521a f06b197 c2b521a f06b197 c2b521a f06b197 c2b521a f06b197 c2b521a f06b197 7f36089 c2b521a f06b197 b27a850 f06b197 b27a850 f06b197 b27a850 f06b197 b27a850 f06b197 b27a850 7f36089 f06b197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import time
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import threading
import queue
import multiprocessing
# First check if GPU is available for maximum speed
has_gpu = torch.cuda.is_available()
gpu_name = torch.cuda.get_device_name(0) if has_gpu else "No GPU"
print(f"GPU available: {has_gpu} - {gpu_name}")
# Download model files
def get_model_path(repo_id, filename):
print(f"Obtaining {filename}...")
return hf_hub_download(repo_id=repo_id, filename=filename)
base_model_path = get_model_path(
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
"articulate-11-expspanish-base-merged-q8_0.gguf"
)
adapter_path = get_model_path(
"johnpaulbin/articulate-V1-Q8_0-GGUF",
"articulate-V1-q8_0.gguf"
)
# Set up optimized environment variables for llama-cpp-python
os.environ["LLAMA_CUBLAS"] = "1" if has_gpu else "0"
os.environ["LLAMA_CLBLAST"] = "0" # Disable OpenCL
# For CPU: Use AVX2/AVX512/AVX-VNNI instruction sets if available
os.environ["LLAMA_AVX"] = "1"
os.environ["LLAMA_AVX2"] = "1"
os.environ["LLAMA_F16"] = "1" # Use FP16 where available
# Determine the most optimized backend
if has_gpu:
try:
from llama_cpp_python.llama_cpp.llama import Llama as GPULlama
LlamaClass = GPULlama
print("Using GPU-accelerated llama-cpp-python")
n_gpu_layers = -1 # Use all layers on GPU
except ImportError:
from llama_cpp import Llama
LlamaClass = Llama
print("Using standard llama-cpp-python with GPU acceleration")
n_gpu_layers = -1 # Use all layers on GPU
else:
from llama_cpp import Llama
LlamaClass = Llama
print("Using CPU-only llama-cpp-python")
n_gpu_layers = 0
# Cache for translations
translation_cache = {}
MAX_CACHE_SIZE = 1000
# Pre-compute common translations
COMMON_PHRASES = {
"English to Spanish": [
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is"
],
"Spanish to English": [
"Hola", "Gracias", "Buenos dรญas", "ยฟCรณmo estรกs?", "ยฟCรณmo te llamas?",
"No entiendo", "Por favor", "Lo siento", "Sรญ", "No", "Dรณnde estรก"
],
"English to Korean": [
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is"
],
"Korean to English": [
"์๋
ํ์ธ์", "๊ฐ์ฌํฉ๋๋ค", "์ข์ ์์นจ์
๋๋ค", "์ด๋ป๊ฒ ์ง๋ด์ธ์?", "์ด๋ฆ์ด ๋ญ์์?",
"์ดํด๊ฐ ์ ๋ผ์", "์ ๋ฐ", "์ฃ์กํฉ๋๋ค", "๋ค", "์๋์", "์ด๋์ ์์ด์"
]
}
# Background worker for model loading and inference
class ModelWorker:
def __init__(self):
self.model = None
self.request_queue = queue.Queue()
self.response_queue = queue.Queue()
self.worker_thread = threading.Thread(target=self._worker_loop, daemon=True)
self.worker_thread.start()
def _worker_loop(self):
# Initialize model in the worker thread
print("Initializing model in background thread...")
# CPU optimization settings
cpu_count = multiprocessing.cpu_count()
optimal_threads = max(4, cpu_count - 2) # Leave two cores free
# Initialize with the most optimized settings
start_time = time.time()
self.model = LlamaClass(
model_path=base_model_path,
lora_path=adapter_path,
n_ctx=512, # Larger context for longer translations
n_threads=optimal_threads, # Optimized thread count
n_batch=1024, # Large batch for parallel processing
use_mmap=True, # Efficient memory mapping
n_gpu_layers=n_gpu_layers, # GPU acceleration if available
seed=42, # Consistent results
verbose=False, # Reduce overhead
main_gpu=0, # Primary GPU
tensor_split=None, # Auto-distribute across GPUs if multiple
rope_freq_base=10000, # Optimized attention parameters
rope_freq_scale=1.0,
)
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# Pre-warm the model with common phrases
self._prewarm_model()
# Process requests
while True:
try:
request = self.request_queue.get()
if request is None: # Shutdown signal
break
direction, text, callback_id = request
result = self._process_translation(direction, text)
self.response_queue.put((callback_id, result))
except Exception as e:
print(f"Error in worker thread: {e}")
self.response_queue.put((callback_id, f"Error: {str(e)}"))
def _prewarm_model(self):
"""Pre-compute common translations to warm up the model"""
print("Pre-warming model with common phrases...")
start = time.time()
for direction, phrases in COMMON_PHRASES.items():
for phrase in phrases[:3]: # Just do a few to warm up
self._process_translation(direction, phrase)
print(f"Model pre-warming completed in {time.time() - start:.2f} seconds")
def _process_translation(self, direction, text):
# Skip empty inputs
if not text or not text.strip():
return ""
# Check cache first for faster response
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# Start timing for performance tracking
start_time = time.time()
# Map language directions
lang_map = {
"English to Spanish": ("ENGLISH", "SPANISH"),
"Spanish to English": ("SPANISH", "ENGLISH"),
"Korean to English": ("KOREAN", "ENGLISH"),
"English to Korean": ("ENGLISH", "KOREAN")
}
if direction not in lang_map:
return "Invalid direction"
source_lang, target_lang = lang_map[direction]
# Efficient prompt format
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]"
# Estimate appropriate token length based on input
input_tokens = len(text.split())
max_tokens = min(200, max(50, int(input_tokens * 1.5)))
# Generate translation with optimized settings
response = self.model.create_completion(
prompt,
max_tokens=max_tokens,
temperature=0.0, # Deterministic for faster inference
top_k=1, # Only consider most likely token
top_p=1.0, # No sampling
repeat_penalty=1.0, # No repeat penalty
stream=False # Get complete response at once
)
translation = response['choices'][0]['text'].strip()
# Cache result
if len(translation_cache) >= MAX_CACHE_SIZE:
# Remove oldest entry (first key)
translation_cache.pop(next(iter(translation_cache)))
translation_cache[cache_key] = translation
# Log performance
inference_time = time.time() - start_time
tokens_per_second = (input_tokens + len(translation.split())) / inference_time
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)")
return translation
def request_translation(self, direction, text, callback_id):
"""Queue a translation request"""
self.request_queue.put((direction, text, callback_id))
# Create worker instance
worker = ModelWorker()
# Counter for request IDs
next_request_id = 0
# Gradio interface functions
def translate(direction, text, progress=gr.Progress()):
"""Queue translation request and wait for result"""
global next_request_id
# Check cache first for immediate response
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# If input is very short, check if we have a similar cached phrase
if len(text) < 20:
for cached_key in translation_cache:
cached_dir, cached_text = cached_key.split(":", 1)
if cached_dir == direction and cached_text.lower().startswith(text.lower()):
return translation_cache[cached_key]
# Generate unique request ID
request_id = next_request_id
next_request_id += 1
# Queue the request
worker.request_translation(direction, text, request_id)
# Wait for the response (with progress feedback)
progress(0, desc="Translating...")
max_wait = 30 # Maximum wait time in seconds
start_time = time.time()
while time.time() - start_time < max_wait:
progress((time.time() - start_time) / max_wait)
# Check for our response
try:
while not worker.response_queue.empty():
resp_id, result = worker.response_queue.get_nowait()
if resp_id == request_id:
progress(1.0)
return result
except queue.Empty:
pass
# Small sleep to prevent CPU hogging
time.sleep(0.05)
progress(1.0)
return "Translation timed out. Please try again."
# Create Gradio interface
with gr.Blocks(title="Ultra-Fast Translation App") as iface:
gr.Markdown(f"""
## Ultra-Fast Translation App
Running on: {'GPU: ' + gpu_name if has_gpu else 'CPU only'}
""")
with gr.Row():
direction = gr.Dropdown(
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"],
label="Translation Direction",
value="English to Spanish"
)
with gr.Row():
input_text = gr.Textbox(lines=5, label="Input Text", placeholder="Enter text to translate...")
output_text = gr.Textbox(lines=5, label="Translation")
# Add translate button
translate_btn = gr.Button("Translate")
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
# Optimization options
with gr.Accordion("Advanced Options", open=False):
gr.Markdown("""
### Performance Tips
- Short sentences translate faster than long paragraphs
- Common phrases may be cached for instant results
- First translation might be slower as the model warms up
""")
# Add examples with preloaded common phrases
gr.Examples(
examples=[
["English to Spanish", "Hello, how are you today?"],
["Spanish to English", "Hola, ยฟcรณmo estรกs hoy?"],
["English to Korean", "The weather is nice today."],
["Korean to English", "์๋
ํ์ธ์, ๋ง๋์ ๋ฐ๊ฐ์ต๋๋ค."]
],
inputs=[direction, input_text],
fn=translate,
outputs=output_text
)
# Launch with optimized settings
iface.launch(
debug=False,
show_error=True,
share=False, # Don't share publicly by default
quiet=True, # Reduce console output
server_name="0.0.0.0",
server_port=7860
) |