Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pathlib
|
3 |
+
import streamlit as st
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from unsloth import FastLanguageModel, is_bfloat16_supported
|
7 |
+
import importlib
|
8 |
+
import random
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
st.title("π§ Math LLM Demo")
|
15 |
+
st.text(f"Using device: {device}")
|
16 |
+
|
17 |
+
# === MODEL SELECTION ===
|
18 |
+
MODEL_OPTIONS = {
|
19 |
+
"Vanilla GPT-2": "openai-community/gpt2",
|
20 |
+
"GPT2-Small-CPT-CL-IFT": "jonathantiedchen/GPT2-Small-CPT-CL-IFT",
|
21 |
+
"Mistral 7B+CPT+CL+IFT": "jonathantiedchen/MistralMath-CPT-IFT"
|
22 |
+
}
|
23 |
+
|
24 |
+
@st.cache_resource
|
25 |
+
def load_models():
|
26 |
+
models = {}
|
27 |
+
for name, path in MODEL_OPTIONS.items():
|
28 |
+
if "mistral" in name.lower():
|
29 |
+
try:
|
30 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
31 |
+
model_name=path,
|
32 |
+
max_seq_length=2048,
|
33 |
+
dtype=torch.bfloat16 if is_bfloat16_supported() else torch.float16,
|
34 |
+
load_in_4bit=True
|
35 |
+
)
|
36 |
+
|
37 |
+
if tokenizer.pad_token is None:
|
38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
39 |
+
FastLanguageModel.for_inference(model)
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"β οΈ Failed to load Mistral model with Unsloth: {e}")
|
43 |
+
continue
|
44 |
+
else:
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(path).to(device)
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
models[name] = {"tokenizer": tokenizer, "model": model}
|
50 |
+
return models
|
51 |
+
|
52 |
+
|
53 |
+
models = load_models()
|
54 |
+
|
55 |
+
model_choice = st.selectbox("Choose a model:", list(MODEL_OPTIONS.keys()))
|
56 |
+
tokenizer = models[model_choice]["tokenizer"]
|
57 |
+
model = models[model_choice]["model"]
|
58 |
+
|
59 |
+
# === LOAD DATA ===
|
60 |
+
@st.cache_resource
|
61 |
+
def load_gsm8k_dataset():
|
62 |
+
return load_dataset("openai/gsm8k", "main")["test"]
|
63 |
+
|
64 |
+
gsm8k_data = load_gsm8k_dataset()
|
65 |
+
st.write("π GSM8K loaded:", len(gsm8k_data), "samples")
|
66 |
+
|
67 |
+
# === TABS ===
|
68 |
+
tab1, tab2 = st.tabs(["π Manual Prompting", "π GSM8K Evaluation"])
|
69 |
+
|
70 |
+
# === MANUAL GENERATION TAB ===
|
71 |
+
with tab1:
|
72 |
+
prompt = st.text_area("Enter your math prompt:", "Jasper has 5 apples and eats 2 of them. How many apples does he have left?")
|
73 |
+
if st.button("Generate Response", key="manual"):
|
74 |
+
with st.spinner("Generating..."):
|
75 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
76 |
+
output = model.generate(
|
77 |
+
**inputs,
|
78 |
+
max_new_tokens=100,
|
79 |
+
temperature=0.7,
|
80 |
+
do_sample=True,
|
81 |
+
pad_token_id=tokenizer.eos_token_id,
|
82 |
+
eos_token_id=tokenizer.eos_token_id,
|
83 |
+
)
|
84 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
85 |
+
|
86 |
+
response_only = generated_text[len(prompt):].strip()
|
87 |
+
|
88 |
+
st.subheader("π Prompt")
|
89 |
+
st.code(prompt)
|
90 |
+
st.subheader("π§ Model Output")
|
91 |
+
st.code(generated_text)
|
92 |
+
st.subheader("βοΈ Response Only")
|
93 |
+
st.success(response_only)
|
94 |
+
|
95 |
+
# === GSM8K TAB ===
|
96 |
+
with tab2:
|
97 |
+
st.markdown("A random question from GSM8K will be shown. Click below to test the model.")
|
98 |
+
|
99 |
+
if st.button("Run GSM8K Sample"):
|
100 |
+
try:
|
101 |
+
sample = random.choice(gsm8k_data)
|
102 |
+
question = sample["question"]
|
103 |
+
gold_answer = sample["answer"]
|
104 |
+
|
105 |
+
inputs = tokenizer(question, return_tensors="pt").to(model.device)
|
106 |
+
|
107 |
+
st.markdown(f"Create Output")
|
108 |
+
output = model.generate(
|
109 |
+
**inputs,
|
110 |
+
max_new_tokens=150,
|
111 |
+
temperature=0.7,
|
112 |
+
do_sample=True,
|
113 |
+
pad_token_id=tokenizer.eos_token_id,
|
114 |
+
eos_token_id=tokenizer.eos_token_id,
|
115 |
+
)
|
116 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
117 |
+
response_only = generated_text[len(question):].strip()
|
118 |
+
|
119 |
+
st.subheader("π GSM8K Question")
|
120 |
+
st.markdown(question)
|
121 |
+
|
122 |
+
st.subheader("π Model Output")
|
123 |
+
st.markdown(generated_text)
|
124 |
+
|
125 |
+
st.subheader("βοΈ Response Only")
|
126 |
+
st.success(response_only)
|
127 |
+
|
128 |
+
st.subheader("β
Gold Answer")
|
129 |
+
st.info(gold_answer)
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
st.error(f"Error: {e}")
|