import os from pathlib import Path import pandas as pd import gradio as gr from collections import OrderedDict from PIL import Image, ImageDraw, ImageFont from io import BytesIO import PyPDF2 import pdf2image MAX_PAGES = 50 MAX_PDF_SIZE = 100000000 # almost 100MB MIN_WIDTH, MIN_HEIGHT = 150, 150 def equal_image_grid(images): def compute_grid(n, max_cols=6): equalDivisor = int(n**0.5) cols = min(equalDivisor, max_cols) rows = equalDivisor if rows * cols >= n: return rows, cols cols += 1 if rows * cols >= n: return rows, cols while rows * cols < n: rows += 1 return rows, cols # assert len(images) == rows*cols rows, cols = compute_grid(len(images)) # rescaling to min width [height padding] images = [im for im in images if (im.height > 0) and (im.width > 0)] # could be NA min_width = min(im.width for im in images) images = [im.resize((min_width, int(im.height * min_width / im.width)), resample=Image.BICUBIC) for im in images] w, h = max([img.size[0] for img in images]), max([img.size[1] for img in images]) grid = Image.new("RGB", size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(images): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def add_pagenumbers(im_list, height_scale=40): def add_pagenumber(image, i): width, height = image.size draw = ImageDraw.Draw(image) fontsize = int((width * height) ** (0.5) / height_scale) font = ImageFont.truetype("Arial.ttf", fontsize) margin = int(2 * fontsize) draw.text( (width - margin, height - margin), str(i + 1), fill="#D00917", font=font, spacing=4, align="right", ) for i, image in enumerate(im_list): add_pagenumber(image, i) def pdf_to_grid(pdf_path): reader = PyPDF2.PdfReader(pdf_path) reached_page_limit = False images = [] try: for p, page in enumerate(reader.pages): if reached_page_limit: break for image in page.images: im = Image.open(BytesIO(image.data)) if im.width < MIN_WIDTH and im.height < MIN_HEIGHT: continue images.append(im) except Exception as e: print(f"{pdf_path} PyPDF get_images {e}") images = pdf2image.convert_from_path(pdf_path) # simpler but slower # images = pdf2image.convert_from_path(pdf_path) if len(images) == 0: return None add_pagenumbers(images) return equal_image_grid(images) def main(complexity, evidence, form, operation, type): # need to write a query on diagnostic test and sample from it based on slider values # then return the sample query = " and ".join( [ f"{cat}_{val} == {True}" for cat, val in zip(meta_cats.keys(), [complexity, evidence, form, operation, type]) if val ] ) results = DIAGNOSTIC_TEST.query(query) if len(results) == 0: return f"No results found for query {query}", "", "", "", "" for i, sample in results.sample(frac=1).iterrows(): if not sample['nhash']: continue print("Sampled: ", sample["nhash"]) # first get PDF file PDF, grid = None, None pdf_path = PDF_PATH / "test" / (sample["nhash"] + ".pdf") if not os.path.exists(pdf_path): continue PDF = pdf_path grid = pdf_to_grid(pdf_path) if not grid: continue question, answer = sample["label"] #might need to translate return label, grid, PDF _CLASSES = [ "letter", "form", "email", "handwritten", "advertisement", "scientific report", "scientific publication", "specification", "file folder", "news article", "budget", "invoice", "presentation", "questionnaire", "resume", "memo", ] # test # l, im, f = main(*slider_defaults) #load both datasets in memory? --> easier retrieval afterwards with seed index based on pressing button DATASETS = { 'rvl_cdip': load_dataset( "bdpc/rvl_cdip_mp", split="test"), 'rvl_cdip_N': load_dataset( "bdpc/rvl_cdip_mp", split="test") } meta_cats = {'dataset': ['rvl_cdip', 'rvl_cdip_N'], 'label': _CLASSES } sliders = [gr.Dropdown(choices=choices, value=choices[-1], label=label) for label, choices in meta_cats.items()] slider_defaults = [slider.value for slider in sliders] outputs = [ gr.Textbox(label="label"), gr.Image(label="image grid of PDF"), gr.File(label="PDF"), ] iface = gr.Interface(fn=main, inputs=sliders, outputs=outputs, description="Visualize PDF samples from multi-page (PDF) document classification datasets", title='Beyond Document Page Classification: Examples') iface.launch(share=True)