Upload 3 files
Browse files- Leave_policy/leave-policy.docx +0 -0
- faiss_leave_policy_RCV/index.faiss +0 -0
- streamlit_base.py +77 -0
Leave_policy/leave-policy.docx
ADDED
|
Binary file (43.7 kB). View file
|
|
|
faiss_leave_policy_RCV/index.faiss
ADDED
|
Binary file (160 kB). View file
|
|
|
streamlit_base.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import langchain
|
| 2 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 3 |
+
# from langchain.vectorstores import Chroma
|
| 4 |
+
from langchain.vectorstores import FAISS
|
| 5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
+
from langchain.llms import OpenAI
|
| 7 |
+
from langchain.chains import VectorDBQA
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
from langchain.document_loaders import DirectoryLoader
|
| 10 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 11 |
+
from langchain.memory import ConversationBufferMemory
|
| 12 |
+
from langchain.evaluation.qa import QAGenerateChain
|
| 13 |
+
import magic
|
| 14 |
+
import os
|
| 15 |
+
import streamlit as st
|
| 16 |
+
from streamlit_chat import message
|
| 17 |
+
|
| 18 |
+
st.title("Welcome to BhubBot")
|
| 19 |
+
|
| 20 |
+
if 'responses' not in st.session_state:
|
| 21 |
+
st.session_state['responses'] = ["How can I assist you?"]
|
| 22 |
+
|
| 23 |
+
if 'requests' not in st.session_state:
|
| 24 |
+
st.session_state['requests'] = []
|
| 25 |
+
|
| 26 |
+
openai_api_key = os.getenv("OPENAI_API_KEY", "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")
|
| 27 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
| 28 |
+
new_db = FAISS.load_local("faiss_leave_policy_RCV", embeddings)
|
| 29 |
+
llm = OpenAI(openai_api_key=openai_api_key, temperature=0.0)
|
| 30 |
+
|
| 31 |
+
# if 'buffer_memory' not in st.session_state:
|
| 32 |
+
memory= ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 33 |
+
retriever = new_db.as_retriever()
|
| 34 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type="stuff", memory= memory,retriever=retriever, verbose=False)
|
| 35 |
+
|
| 36 |
+
# container for chat history
|
| 37 |
+
response_container = st.container()
|
| 38 |
+
# container for text box
|
| 39 |
+
textcontainer = st.container()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
with textcontainer:
|
| 43 |
+
query = st.text_input(label="Please Enter Your Prompt Here: ", placeholder="Ask me")
|
| 44 |
+
if query:
|
| 45 |
+
with st.spinner("Cooking..."):
|
| 46 |
+
# conversation_string = get_conversation_string()
|
| 47 |
+
# st.code(conversation_string)
|
| 48 |
+
# refined_query = query_refiner(conversation_string, query)
|
| 49 |
+
# st.subheader("Refined Query:")
|
| 50 |
+
# st.write(refined_query)
|
| 51 |
+
# context = find_match(refined_query)
|
| 52 |
+
# print(context)
|
| 53 |
+
response = chain.run(query)
|
| 54 |
+
st.session_state.requests.append(query)
|
| 55 |
+
st.session_state.responses.append(response)
|
| 56 |
+
with response_container:
|
| 57 |
+
if st.session_state['responses']:
|
| 58 |
+
|
| 59 |
+
for i in range(len(st.session_state['responses'])):
|
| 60 |
+
message(st.session_state['responses'][i],key=str(i))
|
| 61 |
+
if i < len(st.session_state['requests']):
|
| 62 |
+
message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user')
|
| 63 |
+
|
| 64 |
+
# with st.expander('Message history'):
|
| 65 |
+
# st.info(memory.buffer)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|