Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,104 @@
|
|
1 |
-
# Para Spaces de Hugging Face, la app principal debe llamarse app.py
|
2 |
-
# Este archivo es una copia de ejemplo_2_.py
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, pipeline
|
6 |
-
|
7 |
-
@st.cache_resource
|
8 |
-
def load_models():
|
9 |
-
# FLAN-T5 para QA
|
10 |
-
flan_name = "google/flan-t5-small"
|
11 |
-
flan_tokenizer = AutoTokenizer.from_pretrained(flan_name)
|
12 |
-
flan_model = AutoModelForSeq2SeqLM.from_pretrained(flan_name)
|
13 |
-
|
14 |
-
# DistilBERT para clasificación (modelo base)
|
15 |
-
distil_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
16 |
-
sentiment_analyzer = pipeline("sentiment-analysis", model=distil_name)
|
17 |
-
|
18 |
-
# DistilBERT fine-tuned propio
|
19 |
-
custom_name = "juancmamacias/jd-jcms"
|
20 |
-
custom_analyzer = pipeline("sentiment-analysis", model=custom_name)
|
21 |
-
|
22 |
-
return flan_tokenizer, flan_model, sentiment_analyzer, custom_analyzer
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Cargar modelos antes de cualquier uso
|
27 |
-
st.set_page_config(page_title="SLM Demo: QA + Sentiment", page_icon="🧠", layout="wide")
|
28 |
-
|
29 |
-
# Ocultar header, footer y menú de Streamlit
|
30 |
-
hide_streamlit_style = """
|
31 |
-
<style>
|
32 |
-
#MainMenu {visibility: hidden;}
|
33 |
-
header {visibility: hidden;}
|
34 |
-
footer {visibility: hidden;}
|
35 |
-
</style>
|
36 |
-
"""
|
37 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
38 |
-
flan_tokenizer, flan_model, sentiment_analyzer, custom_analyzer = load_models()
|
39 |
-
|
40 |
-
# Layout con dos columnas
|
41 |
-
col1, col2 = st.columns([1,2])
|
42 |
-
|
43 |
-
|
44 |
-
with col1:
|
45 |
-
st.title("🧠 Small Language Models Demo")
|
46 |
-
st.markdown("""
|
47 |
-
Esta app compara tres Small Language Models:
|
48 |
-
- `flan-t5-small` para responder preguntas.
|
49 |
-
- `distilBERT` para análisis de sentimiento.
|
50 |
-
- `distilBERT` fine-tuned para análisis de sentimiento.
|
51 |
-
""")
|
52 |
-
st.markdown("""
|
53 |
-
## Autores
|
54 |
-
- Juan Domingo ([GitHub](https://github.com/jdomdev))
|
55 |
-
- Juan Carlos Macías ([GitHub](https://github.com/juancmacias))
|
56 |
-
""")
|
57 |
-
|
58 |
-
with col2:
|
59 |
-
if "history" not in st.session_state:
|
60 |
-
st.session_state.history = []
|
61 |
-
|
62 |
-
question = st.text_input("💬 Escribe una pregunta o frase para analizar:")
|
63 |
-
|
64 |
-
if st.button("Procesar") and question:
|
65 |
-
with st.spinner("Procesando..."):
|
66 |
-
# ➤ Respuesta con FLAN-T5 usando prompt explícito
|
67 |
-
prompt = f"Answer the following question: {question}"
|
68 |
-
input_ids = flan_tokenizer(prompt, return_tensors="pt").input_ids
|
69 |
-
outputs = flan_model.generate(input_ids, max_length=50)
|
70 |
-
flan_answer = flan_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
-
|
72 |
-
# ➤ Clasificación con DistilBERT base
|
73 |
-
sentiment = sentiment_analyzer(question)[0]
|
74 |
-
sentiment_label = sentiment['label']
|
75 |
-
sentiment_score = round(sentiment['score'], 3)
|
76 |
-
|
77 |
-
# Traducción de etiquetas para ambos modelos
|
78 |
-
label_map = {"LABEL_0": "NEGATIVO", "LABEL_1": "POSITIVO", "NEGATIVE": "NEGATIVO", "POSITIVE": "POSITIVO"}
|
79 |
-
sentiment_label = label_map.get(sentiment_label, sentiment_label)
|
80 |
-
|
81 |
-
# ➤ Clasificación con DistilBERT fine-tuned propio
|
82 |
-
custom_sentiment = custom_analyzer(question)[0]
|
83 |
-
custom_label = custom_sentiment['label']
|
84 |
-
custom_score = round(custom_sentiment['score'], 3)
|
85 |
-
custom_label = label_map.get(custom_label, custom_label)
|
86 |
-
|
87 |
-
# Guardar en historial
|
88 |
-
st.session_state.history.append({
|
89 |
-
"question": question,
|
90 |
-
"answer": flan_answer,
|
91 |
-
"sentiment": f"{sentiment_label} ({sentiment_score})",
|
92 |
-
"custom_sentiment": f"{custom_label} ({custom_score})"
|
93 |
-
})
|
94 |
-
|
95 |
-
# Mostrar historial
|
96 |
-
if st.session_state.history:
|
97 |
-
st.markdown("### 📜 Historial")
|
98 |
-
for i, item in enumerate(reversed(st.session_state.history), 1):
|
99 |
-
st.markdown(f"""
|
100 |
-
**{i}. Entrada:** {item['question']}
|
101 |
-
🧠 **Respuesta (FLAN):** {item['answer']}
|
102 |
-
❤️ **Sentimiento (base):** {item['sentiment']}
|
103 |
-
💙 **Sentimiento (propio):** {item['custom_sentiment']}
|
104 |
-
---""")
|
|
|
1 |
+
# Para Spaces de Hugging Face, la app principal debe llamarse app.py
|
2 |
+
# Este archivo es una copia de ejemplo_2_.py
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, pipeline
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def load_models():
|
9 |
+
# FLAN-T5 para QA
|
10 |
+
flan_name = "google/flan-t5-small"
|
11 |
+
flan_tokenizer = AutoTokenizer.from_pretrained(flan_name)
|
12 |
+
flan_model = AutoModelForSeq2SeqLM.from_pretrained(flan_name)
|
13 |
+
|
14 |
+
# DistilBERT para clasificación (modelo base)
|
15 |
+
distil_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
16 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=distil_name)
|
17 |
+
|
18 |
+
# DistilBERT fine-tuned propio
|
19 |
+
custom_name = "juancmamacias/jd-jcms"
|
20 |
+
custom_analyzer = pipeline("sentiment-analysis", model=custom_name)
|
21 |
+
|
22 |
+
return flan_tokenizer, flan_model, sentiment_analyzer, custom_analyzer
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# Cargar modelos antes de cualquier uso
|
27 |
+
st.set_page_config(page_title="SLM Demo: QA + Sentiment", page_icon="🧠", layout="wide")
|
28 |
+
|
29 |
+
# Ocultar header, footer y menú de Streamlit
|
30 |
+
hide_streamlit_style = """
|
31 |
+
<style>
|
32 |
+
#MainMenu {visibility: hidden;}
|
33 |
+
header {visibility: hidden;}
|
34 |
+
footer {visibility: hidden;}
|
35 |
+
</style>
|
36 |
+
"""
|
37 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
38 |
+
flan_tokenizer, flan_model, sentiment_analyzer, custom_analyzer = load_models()
|
39 |
+
|
40 |
+
# Layout con dos columnas
|
41 |
+
col1, col2 = st.columns([1,2])
|
42 |
+
|
43 |
+
|
44 |
+
with col1:
|
45 |
+
st.title("🧠 Small Language Models Demo")
|
46 |
+
st.markdown("""
|
47 |
+
Esta app compara tres Small Language Models:
|
48 |
+
- `flan-t5-small` para responder preguntas.
|
49 |
+
- `distilBERT` para análisis de sentimiento.
|
50 |
+
- `distilBERT` fine-tuned para análisis de sentimiento.
|
51 |
+
""")
|
52 |
+
st.markdown("""
|
53 |
+
## Autores
|
54 |
+
- Juan Domingo ([GitHub](https://github.com/jdomdev))
|
55 |
+
- Juan Carlos Macías ([GitHub](https://github.com/juancmacias))([Porfolio](https://www.juancarlosmacias.es))
|
56 |
+
""")
|
57 |
+
|
58 |
+
with col2:
|
59 |
+
if "history" not in st.session_state:
|
60 |
+
st.session_state.history = []
|
61 |
+
|
62 |
+
question = st.text_input("💬 Escribe una pregunta o frase para analizar: improve in English")
|
63 |
+
|
64 |
+
if st.button("Procesar") and question:
|
65 |
+
with st.spinner("Procesando..."):
|
66 |
+
# ➤ Respuesta con FLAN-T5 usando prompt explícito
|
67 |
+
prompt = f"Answer the following question: {question}"
|
68 |
+
input_ids = flan_tokenizer(prompt, return_tensors="pt").input_ids
|
69 |
+
outputs = flan_model.generate(input_ids, max_length=50)
|
70 |
+
flan_answer = flan_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
|
72 |
+
# ➤ Clasificación con DistilBERT base
|
73 |
+
sentiment = sentiment_analyzer(question)[0]
|
74 |
+
sentiment_label = sentiment['label']
|
75 |
+
sentiment_score = round(sentiment['score'], 3)
|
76 |
+
|
77 |
+
# Traducción de etiquetas para ambos modelos
|
78 |
+
label_map = {"LABEL_0": "NEGATIVO", "LABEL_1": "POSITIVO", "NEGATIVE": "NEGATIVO", "POSITIVE": "POSITIVO"}
|
79 |
+
sentiment_label = label_map.get(sentiment_label, sentiment_label)
|
80 |
+
|
81 |
+
# ➤ Clasificación con DistilBERT fine-tuned propio
|
82 |
+
custom_sentiment = custom_analyzer(question)[0]
|
83 |
+
custom_label = custom_sentiment['label']
|
84 |
+
custom_score = round(custom_sentiment['score'], 3)
|
85 |
+
custom_label = label_map.get(custom_label, custom_label)
|
86 |
+
|
87 |
+
# Guardar en historial
|
88 |
+
st.session_state.history.append({
|
89 |
+
"question": question,
|
90 |
+
"answer": flan_answer,
|
91 |
+
"sentiment": f"{sentiment_label} ({sentiment_score})",
|
92 |
+
"custom_sentiment": f"{custom_label} ({custom_score})"
|
93 |
+
})
|
94 |
+
|
95 |
+
# Mostrar historial
|
96 |
+
if st.session_state.history:
|
97 |
+
st.markdown("### 📜 Historial")
|
98 |
+
for i, item in enumerate(reversed(st.session_state.history), 1):
|
99 |
+
st.markdown(f"""
|
100 |
+
**{i}. Entrada:** {item['question']}
|
101 |
+
🧠 **Respuesta (FLAN):** {item['answer']}
|
102 |
+
❤️ **Sentimiento (base):** {item['sentiment']}
|
103 |
+
💙 **Sentimiento (propio):** {item['custom_sentiment']}
|
104 |
+
---""")
|