Spaces:
Sleeping
Sleeping
File size: 20,183 Bytes
2446566 6af9be3 2446566 6af9be3 2446566 6af9be3 2446566 6af9be3 2446566 5ca546a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
#!/usr/bin/env python3
"""
Madverse Music API
AI Music Detection Service
"""
# Configure numba before any other imports to avoid caching issues
import os
os.environ.setdefault('NUMBA_DISABLE_JIT', '1')
os.environ.setdefault('NUMBA_CACHE_DIR', '/app/.cache/numba')
from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, HttpUrl
import torch
import soundfile as sf
import scipy.signal
import tempfile
import requests
from pathlib import Path
import time
from typing import Optional, Annotated, List, Union
import uvicorn
import asyncio
from contextlib import asynccontextmanager
import socket
import numpy as np
# Global model variable
model = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan management"""
# Startup
global model
try:
from sonics import HFAudioClassifier
print("๐ Loading Madverse Music AI model...")
# Set cache directory to a writable location
cache_dir = "/app/.cache" if os.path.exists("/app") else "./cache"
os.makedirs(cache_dir, exist_ok=True)
# Load model with explicit cache directory
model = HFAudioClassifier.from_pretrained(
"awsaf49/sonics-spectttra-alpha-120s",
cache_dir=cache_dir
)
model.eval()
print("โ
Model loaded successfully!")
except Exception as e:
print(f"โ Failed to load model: {e}")
import traceback
traceback.print_exc()
raise
yield
# Shutdown
print("๐ Shutting down...")
# Initialize FastAPI app with lifespan
app = FastAPI(
title="Madverse Music API",
description="AI-powered music detection API to identify AI-generated vs human-created music",
version="1.0.0",
docs_url="/",
redoc_url="/docs",
lifespan=lifespan
)
# API Key Configuration
API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo
async def verify_api_key(x_api_key: Annotated[Union[str, None], Header()] = None):
"""Verify API key from header"""
if x_api_key is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please provide a valid X-API-Key header."
)
if x_api_key != API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key. Please provide a valid X-API-Key header."
)
return x_api_key
class MusicAnalysisRequest(BaseModel):
urls: List[HttpUrl]
def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[Union[str, None], Header()] = None):
"""Check API key before processing request"""
if x_api_key is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please provide a valid X-API-Key header."
)
if x_api_key != API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key. Please provide a valid X-API-Key header."
)
return request
class FileAnalysisResult(BaseModel):
url: str
success: bool
classification: Optional[str] = None # "Real" or "Fake"
confidence: Optional[float] = None # 0.0 to 1.0
probability: Optional[float] = None # Raw sigmoid probability
raw_score: Optional[float] = None # Raw model output
duration: Optional[float] = None # Audio duration in seconds
message: str
processing_time: Optional[float] = None
error: Optional[str] = None
class MusicAnalysisResponse(BaseModel):
success: bool
total_files: int
successful_analyses: int
failed_analyses: int
results: List[FileAnalysisResult]
total_processing_time: float
message: str
class ErrorResponse(BaseModel):
success: bool
error: str
message: str
def cleanup_file(file_path: str):
"""Background task to cleanup temporary files"""
try:
if os.path.exists(file_path):
os.unlink(file_path)
except:
pass
def download_audio(url: str, max_size_mb: int = 100) -> str:
"""Download audio file from URL with size validation"""
try:
print(f"๐ฝ Downloading audio from: {url}")
# Check if URL is accessible
response = requests.head(str(url), timeout=10)
print(f"๐ Head response status: {response.status_code}")
# Check content size
content_length = response.headers.get('Content-Length')
if content_length:
size_mb = int(content_length) / (1024 * 1024)
print(f"๐ File size: {size_mb:.2f}MB")
if int(content_length) > max_size_mb * 1024 * 1024:
raise HTTPException(
status_code=413,
detail=f"File too large. Maximum size: {max_size_mb}MB"
)
# Download file
print("๐ฝ Starting download...")
response = requests.get(str(url), timeout=30, stream=True)
response.raise_for_status()
print(f"โ
Download response status: {response.status_code}")
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
downloaded_size = 0
for chunk in response.iter_content(chunk_size=8192):
downloaded_size += len(chunk)
if downloaded_size > max_size_mb * 1024 * 1024:
os.unlink(tmp_file.name)
raise HTTPException(
status_code=413,
detail=f"File too large. Maximum size: {max_size_mb}MB"
)
tmp_file.write(chunk)
print(f"๐พ Downloaded {downloaded_size} bytes to {tmp_file.name}")
return tmp_file.name
except requests.exceptions.RequestException as e:
error_msg = f"Failed to download audio: {str(e)}"
print(f"โ Download error: {error_msg}")
raise HTTPException(
status_code=400,
detail=error_msg
)
except Exception as e:
error_msg = f"Error downloading file: {str(e)}"
print(f"โ Unexpected download error: {error_msg}")
raise HTTPException(
status_code=500,
detail=error_msg
)
def classify_audio(file_path: str) -> dict:
"""Classify audio file using the AI model"""
try:
print(f"๐ต Loading audio file: {file_path}")
# Check if file exists
if not os.path.exists(file_path):
raise ValueError(f"Audio file not found: {file_path}")
# Check file size
file_size = os.path.getsize(file_path)
print(f"๐ Audio file size: {file_size} bytes")
if file_size == 0:
raise ValueError("Audio file is empty")
# Load audio with soundfile
print("๐ Loading audio with soundfile...")
audio, sr = sf.read(file_path)
print(f"๐ผ Audio loaded: {len(audio)} samples at {sr}Hz, duration: {len(audio)/sr:.2f}s")
if len(audio) == 0:
raise ValueError("Audio file contains no audio data")
# Convert to mono if stereo
if audio.ndim > 1:
print("๐ Converting stereo to mono...")
audio = np.mean(audio, axis=1)
# Resample to 16kHz if needed (model requirement)
target_sr = 16000
if sr != target_sr:
print(f"๐ Resampling from {sr}Hz to {target_sr}Hz...")
# Calculate the number of samples after resampling
num_samples = int(len(audio) * target_sr / sr)
audio = scipy.signal.resample(audio, num_samples)
sr = target_sr
print(f"โ
Resampled: {len(audio)} samples at {sr}Hz")
# Convert to tensor and add batch dimension
print("๐งฎ Converting to tensor...")
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
print(f"๐ Tensor shape: {audio_tensor.shape}")
# Get prediction
print("๐ค Running model inference...")
with torch.no_grad():
output = model(audio_tensor)
print(f"๐ Model output: {output}")
# Convert logit to probability using sigmoid
prob = torch.sigmoid(output).item()
print(f"๐ Sigmoid probability: {prob}")
# Classify: prob < 0.5 = Real, prob >= 0.5 = Fake
if prob < 0.5:
classification = "Real"
confidence = (1 - prob) * 2 # Convert to 0-1 scale
else:
classification = "Fake"
confidence = (prob - 0.5) * 2 # Convert to 0-1 scale
result = {
"classification": classification,
"confidence": min(confidence, 1.0), # Cap at 1.0
"probability": prob,
"raw_score": output.item(),
"duration": len(audio) / sr
}
print(f"โ
Classification result: {result}")
return result
except Exception as e:
error_msg = f"Error analyzing audio: {str(e)}"
print(f"โ Audio analysis error: {error_msg}")
import traceback
print(f"๐ Traceback: {traceback.format_exc()}")
raise HTTPException(
status_code=500,
detail=error_msg
)
async def process_single_url(url: str) -> FileAnalysisResult:
"""Process a single URL and return result"""
start_time = time.time()
temp_file = None
try:
print(f"๐ Processing URL: {url}")
# Download audio file
temp_file = download_audio(url)
print(f"โ
Download completed: {temp_file}")
# Classify audio
result = classify_audio(temp_file)
print(f"โ
Classification completed: {result}")
# Calculate processing time
processing_time = time.time() - start_time
# Prepare response
emoji = "๐ค" if result["classification"] == "Real" else "๐ค"
message = f'{emoji} Detected as {result["classification"].lower()} music'
return FileAnalysisResult(
url=str(url),
success=True,
classification=result["classification"],
confidence=result["confidence"],
probability=result["probability"],
raw_score=result["raw_score"],
duration=result["duration"],
message=message,
processing_time=processing_time
)
except Exception as e:
processing_time = time.time() - start_time
error_msg = str(e)
print(f"โ Processing failed for {url}: {error_msg}")
import traceback
print(f"๐ Full traceback: {traceback.format_exc()}")
return FileAnalysisResult(
url=str(url),
success=False,
message=f"โ Failed to process: {error_msg}",
processing_time=processing_time,
error=error_msg
)
finally:
# Cleanup file in background
if temp_file:
try:
print(f"๐งน Cleaning up temporary file: {temp_file}")
os.unlink(temp_file)
except Exception as cleanup_error:
print(f"โ ๏ธ Failed to cleanup {temp_file}: {cleanup_error}")
@app.post("/analyze", response_model=MusicAnalysisResponse)
async def analyze_music(
request: MusicAnalysisRequest = Depends(check_api_key_first)
):
"""
Analyze music from URL(s) to detect if it's AI-generated or human-created
- **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG)
- Returns classification results for each file
- Processes files concurrently for better performance when multiple URLs provided
"""
start_time = time.time()
if not model:
raise HTTPException(
status_code=503,
detail="Model not loaded. Please try again later."
)
if len(request.urls) > 50: # Limit processing
raise HTTPException(
status_code=400,
detail="Too many URLs. Maximum 50 files per request."
)
if len(request.urls) == 0:
raise HTTPException(
status_code=400,
detail="At least one URL is required."
)
try:
# Process all URLs concurrently with limited concurrency
semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads
async def process_with_semaphore(url):
async with semaphore:
return await process_single_url(str(url))
# Create tasks for all URLs
tasks = [process_with_semaphore(url) for url in request.urls]
# Wait for all tasks to complete
results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results and handle any exceptions
processed_results = []
successful_count = 0
failed_count = 0
for i, result in enumerate(results):
if isinstance(result, Exception):
# Handle exception case
processed_results.append(FileAnalysisResult(
url=str(request.urls[i]),
success=False,
message=f"โ Processing failed: {str(result)}",
error=str(result)
))
failed_count += 1
else:
processed_results.append(result)
if result.success:
successful_count += 1
else:
failed_count += 1
# Calculate total processing time
total_processing_time = time.time() - start_time
# Prepare summary message
total_files = len(request.urls)
if total_files == 1:
# Single file message
if successful_count == 1:
message = processed_results[0].message
else:
message = processed_results[0].message
else:
# Multiple files message
if successful_count == total_files:
message = f"โ
Successfully analyzed all {total_files} files"
elif successful_count > 0:
message = f"โ ๏ธ Analyzed {successful_count}/{total_files} files successfully"
else:
message = f"โ Failed to analyze any files"
return MusicAnalysisResponse(
success=successful_count > 0,
total_files=total_files,
successful_analyses=successful_count,
failed_analyses=failed_count,
results=processed_results,
total_processing_time=total_processing_time,
message=message
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error during processing: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"model_loaded": model is not None,
"service": "Madverse Music API"
}
@app.get("/info")
async def get_info():
"""Get API information"""
return {
"name": "Madverse Music API",
"version": "1.0.0",
"description": "AI-powered music detection to identify AI-generated vs human-created music",
"model": "SpecTTTra-ฮฑ (120s)",
"accuracy": {
"f1_score": 0.97,
"sensitivity": 0.96,
"specificity": 0.99
},
"supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"],
"max_file_size": "100MB",
"max_duration": "120 seconds",
"authentication": {
"required": True,
"type": "API Key",
"header": "X-API-Key",
"example": "X-API-Key: your-api-key-here"
},
"usage": {
"curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'"
}
}
def find_available_port(start_port: int = 8000, max_attempts: int = 10) -> int:
"""Find an available port starting from start_port"""
import random
import time
# Add some randomization to avoid race conditions
time.sleep(random.uniform(0.1, 0.5))
for port in range(start_port, start_port + max_attempts):
try:
# Try to bind to the port with proper error handling
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(('0.0.0.0', port))
s.listen(1)
print(f"โ
Port {port} is available")
return port
except OSError as e:
print(f"โ Port {port} is busy: {e}")
continue
# If no port found, raise an exception
raise RuntimeError(f"No available port found in range {start_port}-{start_port + max_attempts - 1}")
if __name__ == "__main__":
try:
# Check if we're in a Hugging Face environment
is_hf_space = os.getenv('SPACE_ID') is not None
hf_port = os.getenv('PORT') # HF Spaces sets this
if is_hf_space and hf_port:
# Use HF Spaces assigned port
port = int(hf_port)
print(f"๐ค Running in Hugging Face Spaces on port {port}")
elif is_hf_space:
print("๐ค Running in Hugging Face Spaces environment")
# Use standard HF Spaces port
port = 7860
else:
# Find an available port for local development
port = find_available_port(8000, 10)
print(f"๐ Starting server on port {port}")
# For HF Spaces, don't use the retry logic as it might cause issues
if is_hf_space:
uvicorn.run(app, host="0.0.0.0", port=port)
else:
# Add retry logic for local development
max_retries = 3
for attempt in range(max_retries):
try:
uvicorn.run(app, host="0.0.0.0", port=port)
break # If successful, break out of retry loop
except OSError as e:
if "Address already in use" in str(e) and attempt < max_retries - 1:
print(f"โ ๏ธ Port {port} became busy, trying next port...")
port = find_available_port(port + 1, 10)
print(f"๐ Retrying on port {port}")
else:
raise
except RuntimeError as e:
print(f"โ {e}")
print("๐ก Suggestions:")
print(" 1. Wait a moment and try again (another instance might be shutting down)")
print(" 2. Manually specify a different port:")
print(" uvicorn app:app --host 0.0.0.0 --port 8001")
print(" 3. Check for running processes: ps aux | grep python")
except KeyboardInterrupt:
print("\n๐ Server stopped by user")
except Exception as e:
print(f"โ Failed to start server: {e}")
import traceback
traceback.print_exc() |