Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,272 +1,385 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Madverse Music
|
4 |
-
|
5 |
-
"""
|
6 |
-
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import
|
12 |
-
import
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
)
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Madverse Music API
|
4 |
+
AI Music Detection Service
|
5 |
+
"""
|
6 |
+
|
7 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends
|
8 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
9 |
+
from pydantic import BaseModel, HttpUrl
|
10 |
+
import torch
|
11 |
+
import librosa
|
12 |
+
import tempfile
|
13 |
+
import os
|
14 |
+
import requests
|
15 |
+
from pathlib import Path
|
16 |
+
import time
|
17 |
+
from typing import Optional, Annotated, List
|
18 |
+
import uvicorn
|
19 |
+
import asyncio
|
20 |
+
|
21 |
+
# Initialize FastAPI app
|
22 |
+
app = FastAPI(
|
23 |
+
title="Madverse Music API",
|
24 |
+
description="AI-powered music detection API to identify AI-generated vs human-created music",
|
25 |
+
version="1.0.0",
|
26 |
+
docs_url="/",
|
27 |
+
redoc_url="/docs"
|
28 |
+
)
|
29 |
+
|
30 |
+
# API Key Configuration
|
31 |
+
API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo
|
32 |
+
|
33 |
+
# Global model variable
|
34 |
+
model = None
|
35 |
+
|
36 |
+
async def verify_api_key(x_api_key: Annotated[str | None, Header()] = None):
|
37 |
+
"""Verify API key from header"""
|
38 |
+
if x_api_key is None:
|
39 |
+
raise HTTPException(
|
40 |
+
status_code=401,
|
41 |
+
detail="Missing API key. Please provide a valid X-API-Key header."
|
42 |
+
)
|
43 |
+
if x_api_key != API_KEY:
|
44 |
+
raise HTTPException(
|
45 |
+
status_code=401,
|
46 |
+
detail="Invalid API key. Please provide a valid X-API-Key header."
|
47 |
+
)
|
48 |
+
return x_api_key
|
49 |
+
|
50 |
+
class MusicAnalysisRequest(BaseModel):
|
51 |
+
urls: List[HttpUrl]
|
52 |
+
|
53 |
+
def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[str | None, Header()] = None):
|
54 |
+
"""Check API key before processing request"""
|
55 |
+
if x_api_key is None:
|
56 |
+
raise HTTPException(
|
57 |
+
status_code=401,
|
58 |
+
detail="Missing API key. Please provide a valid X-API-Key header."
|
59 |
+
)
|
60 |
+
if x_api_key != API_KEY:
|
61 |
+
raise HTTPException(
|
62 |
+
status_code=401,
|
63 |
+
detail="Invalid API key. Please provide a valid X-API-Key header."
|
64 |
+
)
|
65 |
+
return request
|
66 |
+
|
67 |
+
class FileAnalysisResult(BaseModel):
|
68 |
+
url: str
|
69 |
+
success: bool
|
70 |
+
classification: Optional[str] = None # "Real" or "Fake"
|
71 |
+
confidence: Optional[float] = None # 0.0 to 1.0
|
72 |
+
probability: Optional[float] = None # Raw sigmoid probability
|
73 |
+
raw_score: Optional[float] = None # Raw model output
|
74 |
+
duration: Optional[float] = None # Audio duration in seconds
|
75 |
+
message: str
|
76 |
+
processing_time: Optional[float] = None
|
77 |
+
error: Optional[str] = None
|
78 |
+
|
79 |
+
class MusicAnalysisResponse(BaseModel):
|
80 |
+
success: bool
|
81 |
+
total_files: int
|
82 |
+
successful_analyses: int
|
83 |
+
failed_analyses: int
|
84 |
+
results: List[FileAnalysisResult]
|
85 |
+
total_processing_time: float
|
86 |
+
message: str
|
87 |
+
|
88 |
+
class ErrorResponse(BaseModel):
|
89 |
+
success: bool
|
90 |
+
error: str
|
91 |
+
message: str
|
92 |
+
|
93 |
+
@app.on_event("startup")
|
94 |
+
async def load_model():
|
95 |
+
"""Load the AI model on startup"""
|
96 |
+
global model
|
97 |
+
try:
|
98 |
+
from sonics import HFAudioClassifier
|
99 |
+
print("🔄 Loading Madverse Music AI model...")
|
100 |
+
model = HFAudioClassifier.from_pretrained("awsaf49/sonics-spectttra-alpha-120s")
|
101 |
+
model.eval()
|
102 |
+
print("✅ Model loaded successfully!")
|
103 |
+
except Exception as e:
|
104 |
+
print(f"❌ Failed to load model: {e}")
|
105 |
+
raise
|
106 |
+
|
107 |
+
def cleanup_file(file_path: str):
|
108 |
+
"""Background task to cleanup temporary files"""
|
109 |
+
try:
|
110 |
+
if os.path.exists(file_path):
|
111 |
+
os.unlink(file_path)
|
112 |
+
except:
|
113 |
+
pass
|
114 |
+
|
115 |
+
def download_audio(url: str, max_size_mb: int = 100) -> str:
|
116 |
+
"""Download audio file from URL with size validation"""
|
117 |
+
try:
|
118 |
+
# Check if URL is accessible
|
119 |
+
response = requests.head(str(url), timeout=10)
|
120 |
+
|
121 |
+
# Check content size
|
122 |
+
content_length = response.headers.get('Content-Length')
|
123 |
+
if content_length and int(content_length) > max_size_mb * 1024 * 1024:
|
124 |
+
raise HTTPException(
|
125 |
+
status_code=413,
|
126 |
+
detail=f"File too large. Maximum size: {max_size_mb}MB"
|
127 |
+
)
|
128 |
+
|
129 |
+
# Download file
|
130 |
+
response = requests.get(str(url), timeout=30, stream=True)
|
131 |
+
response.raise_for_status()
|
132 |
+
|
133 |
+
# Create temporary file
|
134 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as tmp_file:
|
135 |
+
downloaded_size = 0
|
136 |
+
for chunk in response.iter_content(chunk_size=8192):
|
137 |
+
downloaded_size += len(chunk)
|
138 |
+
if downloaded_size > max_size_mb * 1024 * 1024:
|
139 |
+
os.unlink(tmp_file.name)
|
140 |
+
raise HTTPException(
|
141 |
+
status_code=413,
|
142 |
+
detail=f"File too large. Maximum size: {max_size_mb}MB"
|
143 |
+
)
|
144 |
+
tmp_file.write(chunk)
|
145 |
+
|
146 |
+
return tmp_file.name
|
147 |
+
|
148 |
+
except requests.exceptions.RequestException as e:
|
149 |
+
raise HTTPException(
|
150 |
+
status_code=400,
|
151 |
+
detail=f"Failed to download audio: {str(e)}"
|
152 |
+
)
|
153 |
+
except Exception as e:
|
154 |
+
raise HTTPException(
|
155 |
+
status_code=500,
|
156 |
+
detail=f"Error downloading file: {str(e)}"
|
157 |
+
)
|
158 |
+
|
159 |
+
def classify_audio(file_path: str) -> dict:
|
160 |
+
"""Classify audio file using the AI model"""
|
161 |
+
try:
|
162 |
+
# Load audio (model uses 16kHz sample rate)
|
163 |
+
audio, sr = librosa.load(file_path, sr=16000)
|
164 |
+
|
165 |
+
# Convert to tensor and add batch dimension
|
166 |
+
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
|
167 |
+
|
168 |
+
# Get prediction
|
169 |
+
with torch.no_grad():
|
170 |
+
output = model(audio_tensor)
|
171 |
+
|
172 |
+
# Convert logit to probability using sigmoid
|
173 |
+
prob = torch.sigmoid(output).item()
|
174 |
+
|
175 |
+
# Classify: prob < 0.5 = Real, prob >= 0.5 = Fake
|
176 |
+
if prob < 0.5:
|
177 |
+
classification = "Real"
|
178 |
+
confidence = (1 - prob) * 2 # Convert to 0-1 scale
|
179 |
+
else:
|
180 |
+
classification = "Fake"
|
181 |
+
confidence = (prob - 0.5) * 2 # Convert to 0-1 scale
|
182 |
+
|
183 |
+
return {
|
184 |
+
"classification": classification,
|
185 |
+
"confidence": min(confidence, 1.0), # Cap at 1.0
|
186 |
+
"probability": prob,
|
187 |
+
"raw_score": output.item(),
|
188 |
+
"duration": len(audio) / sr
|
189 |
+
}
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
raise HTTPException(
|
193 |
+
status_code=500,
|
194 |
+
detail=f"Error analyzing audio: {str(e)}"
|
195 |
+
)
|
196 |
+
|
197 |
+
async def process_single_url(url: str) -> FileAnalysisResult:
|
198 |
+
"""Process a single URL and return result"""
|
199 |
+
start_time = time.time()
|
200 |
+
|
201 |
+
try:
|
202 |
+
# Download audio file
|
203 |
+
temp_file = download_audio(url)
|
204 |
+
|
205 |
+
# Classify audio
|
206 |
+
result = classify_audio(temp_file)
|
207 |
+
|
208 |
+
# Calculate processing time
|
209 |
+
processing_time = time.time() - start_time
|
210 |
+
|
211 |
+
# Cleanup file in background
|
212 |
+
try:
|
213 |
+
os.unlink(temp_file)
|
214 |
+
except:
|
215 |
+
pass
|
216 |
+
|
217 |
+
# Prepare response
|
218 |
+
emoji = "🎤" if result["classification"] == "Real" else "🤖"
|
219 |
+
message = f'{emoji} Detected as {result["classification"].lower()} music'
|
220 |
+
|
221 |
+
return FileAnalysisResult(
|
222 |
+
url=str(url),
|
223 |
+
success=True,
|
224 |
+
classification=result["classification"],
|
225 |
+
confidence=result["confidence"],
|
226 |
+
probability=result["probability"],
|
227 |
+
raw_score=result["raw_score"],
|
228 |
+
duration=result["duration"],
|
229 |
+
message=message,
|
230 |
+
processing_time=processing_time
|
231 |
+
)
|
232 |
+
|
233 |
+
except Exception as e:
|
234 |
+
processing_time = time.time() - start_time
|
235 |
+
error_msg = str(e)
|
236 |
+
|
237 |
+
return FileAnalysisResult(
|
238 |
+
url=str(url),
|
239 |
+
success=False,
|
240 |
+
message=f"❌ Failed to process: {error_msg}",
|
241 |
+
processing_time=processing_time,
|
242 |
+
error=error_msg
|
243 |
+
)
|
244 |
+
|
245 |
+
@app.post("/analyze", response_model=MusicAnalysisResponse)
|
246 |
+
async def analyze_music(
|
247 |
+
request: MusicAnalysisRequest = Depends(check_api_key_first)
|
248 |
+
):
|
249 |
+
"""
|
250 |
+
Analyze music from URL(s) to detect if it's AI-generated or human-created
|
251 |
+
|
252 |
+
- **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG)
|
253 |
+
- Returns classification results for each file
|
254 |
+
- Processes files concurrently for better performance when multiple URLs provided
|
255 |
+
"""
|
256 |
+
start_time = time.time()
|
257 |
+
|
258 |
+
if not model:
|
259 |
+
raise HTTPException(
|
260 |
+
status_code=503,
|
261 |
+
detail="Model not loaded. Please try again later."
|
262 |
+
)
|
263 |
+
|
264 |
+
if len(request.urls) > 50: # Limit processing
|
265 |
+
raise HTTPException(
|
266 |
+
status_code=400,
|
267 |
+
detail="Too many URLs. Maximum 50 files per request."
|
268 |
+
)
|
269 |
+
|
270 |
+
if len(request.urls) == 0:
|
271 |
+
raise HTTPException(
|
272 |
+
status_code=400,
|
273 |
+
detail="At least one URL is required."
|
274 |
+
)
|
275 |
+
|
276 |
+
try:
|
277 |
+
# Process all URLs concurrently with limited concurrency
|
278 |
+
semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads
|
279 |
+
|
280 |
+
async def process_with_semaphore(url):
|
281 |
+
async with semaphore:
|
282 |
+
return await process_single_url(str(url))
|
283 |
+
|
284 |
+
# Create tasks for all URLs
|
285 |
+
tasks = [process_with_semaphore(url) for url in request.urls]
|
286 |
+
|
287 |
+
# Wait for all tasks to complete
|
288 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
289 |
+
|
290 |
+
# Process results and handle any exceptions
|
291 |
+
processed_results = []
|
292 |
+
successful_count = 0
|
293 |
+
failed_count = 0
|
294 |
+
|
295 |
+
for i, result in enumerate(results):
|
296 |
+
if isinstance(result, Exception):
|
297 |
+
# Handle exception case
|
298 |
+
processed_results.append(FileAnalysisResult(
|
299 |
+
url=str(request.urls[i]),
|
300 |
+
success=False,
|
301 |
+
message=f"❌ Processing failed: {str(result)}",
|
302 |
+
error=str(result)
|
303 |
+
))
|
304 |
+
failed_count += 1
|
305 |
+
else:
|
306 |
+
processed_results.append(result)
|
307 |
+
if result.success:
|
308 |
+
successful_count += 1
|
309 |
+
else:
|
310 |
+
failed_count += 1
|
311 |
+
|
312 |
+
# Calculate total processing time
|
313 |
+
total_processing_time = time.time() - start_time
|
314 |
+
|
315 |
+
# Prepare summary message
|
316 |
+
total_files = len(request.urls)
|
317 |
+
if total_files == 1:
|
318 |
+
# Single file message
|
319 |
+
if successful_count == 1:
|
320 |
+
message = processed_results[0].message
|
321 |
+
else:
|
322 |
+
message = processed_results[0].message
|
323 |
+
else:
|
324 |
+
# Multiple files message
|
325 |
+
if successful_count == total_files:
|
326 |
+
message = f"✅ Successfully analyzed all {total_files} files"
|
327 |
+
elif successful_count > 0:
|
328 |
+
message = f"⚠️ Analyzed {successful_count}/{total_files} files successfully"
|
329 |
+
else:
|
330 |
+
message = f"❌ Failed to analyze any files"
|
331 |
+
|
332 |
+
return MusicAnalysisResponse(
|
333 |
+
success=successful_count > 0,
|
334 |
+
total_files=total_files,
|
335 |
+
successful_analyses=successful_count,
|
336 |
+
failed_analyses=failed_count,
|
337 |
+
results=processed_results,
|
338 |
+
total_processing_time=total_processing_time,
|
339 |
+
message=message
|
340 |
+
)
|
341 |
+
|
342 |
+
except Exception as e:
|
343 |
+
raise HTTPException(
|
344 |
+
status_code=500,
|
345 |
+
detail=f"Internal server error during processing: {str(e)}"
|
346 |
+
)
|
347 |
+
|
348 |
+
@app.get("/health")
|
349 |
+
async def health_check():
|
350 |
+
"""Health check endpoint"""
|
351 |
+
return {
|
352 |
+
"status": "healthy",
|
353 |
+
"model_loaded": model is not None,
|
354 |
+
"service": "Madverse Music API"
|
355 |
+
}
|
356 |
+
|
357 |
+
@app.get("/info")
|
358 |
+
async def get_info():
|
359 |
+
"""Get API information"""
|
360 |
+
return {
|
361 |
+
"name": "Madverse Music API",
|
362 |
+
"version": "1.0.0",
|
363 |
+
"description": "AI-powered music detection to identify AI-generated vs human-created music",
|
364 |
+
"model": "SpecTTTra-α (120s)",
|
365 |
+
"accuracy": {
|
366 |
+
"f1_score": 0.97,
|
367 |
+
"sensitivity": 0.96,
|
368 |
+
"specificity": 0.99
|
369 |
+
},
|
370 |
+
"supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"],
|
371 |
+
"max_file_size": "100MB",
|
372 |
+
"max_duration": "120 seconds",
|
373 |
+
"authentication": {
|
374 |
+
"required": True,
|
375 |
+
"type": "API Key",
|
376 |
+
"header": "X-API-Key",
|
377 |
+
"example": "X-API-Key: your-api-key-here"
|
378 |
+
},
|
379 |
+
"usage": {
|
380 |
+
"curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'"
|
381 |
+
}
|
382 |
+
}
|
383 |
+
|
384 |
+
if __name__ == "__main__":
|
385 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|