Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,531 +1,531 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Madverse Music API
|
4 |
-
AI Music Detection Service
|
5 |
-
"""
|
6 |
-
|
7 |
-
from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends
|
8 |
-
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
9 |
-
from pydantic import BaseModel, HttpUrl
|
10 |
-
import torch
|
11 |
-
import librosa
|
12 |
-
import tempfile
|
13 |
-
import os
|
14 |
-
import requests
|
15 |
-
from pathlib import Path
|
16 |
-
import time
|
17 |
-
from typing import Optional, Annotated, List, Union
|
18 |
-
import uvicorn
|
19 |
-
import asyncio
|
20 |
-
from contextlib import asynccontextmanager
|
21 |
-
import socket
|
22 |
-
|
23 |
-
# Global model variable
|
24 |
-
model = None
|
25 |
-
|
26 |
-
@asynccontextmanager
|
27 |
-
async def lifespan(app: FastAPI):
|
28 |
-
"""Application lifespan management"""
|
29 |
-
# Startup
|
30 |
-
global model
|
31 |
-
try:
|
32 |
-
from sonics import HFAudioClassifier
|
33 |
-
print("🔄 Loading Madverse Music AI model...")
|
34 |
-
|
35 |
-
# Set cache directory to a writable location
|
36 |
-
cache_dir = "/app/.cache" if os.path.exists("/app") else "./cache"
|
37 |
-
os.makedirs(cache_dir, exist_ok=True)
|
38 |
-
|
39 |
-
# Load model with explicit cache directory
|
40 |
-
model = HFAudioClassifier.from_pretrained(
|
41 |
-
"awsaf49/sonics-spectttra-alpha-120s",
|
42 |
-
cache_dir=cache_dir
|
43 |
-
)
|
44 |
-
model.eval()
|
45 |
-
print("✅ Model loaded successfully!")
|
46 |
-
except Exception as e:
|
47 |
-
print(f"❌ Failed to load model: {e}")
|
48 |
-
import traceback
|
49 |
-
traceback.print_exc()
|
50 |
-
raise
|
51 |
-
|
52 |
-
yield
|
53 |
-
|
54 |
-
# Shutdown
|
55 |
-
print("🔄 Shutting down...")
|
56 |
-
|
57 |
-
# Initialize FastAPI app with lifespan
|
58 |
-
app = FastAPI(
|
59 |
-
title="Madverse Music API",
|
60 |
-
description="AI-powered music detection API to identify AI-generated vs human-created music",
|
61 |
-
version="1.0.0",
|
62 |
-
docs_url="/",
|
63 |
-
redoc_url="/docs",
|
64 |
-
lifespan=lifespan
|
65 |
-
)
|
66 |
-
|
67 |
-
# API Key Configuration
|
68 |
-
API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo
|
69 |
-
|
70 |
-
async def verify_api_key(x_api_key: Annotated[Union[str, None], Header()] = None):
|
71 |
-
"""Verify API key from header"""
|
72 |
-
if x_api_key is None:
|
73 |
-
raise HTTPException(
|
74 |
-
status_code=401,
|
75 |
-
detail="Missing API key. Please provide a valid X-API-Key header."
|
76 |
-
)
|
77 |
-
if x_api_key != API_KEY:
|
78 |
-
raise HTTPException(
|
79 |
-
status_code=401,
|
80 |
-
detail="Invalid API key. Please provide a valid X-API-Key header."
|
81 |
-
)
|
82 |
-
return x_api_key
|
83 |
-
|
84 |
-
class MusicAnalysisRequest(BaseModel):
|
85 |
-
urls: List[HttpUrl]
|
86 |
-
|
87 |
-
def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[Union[str, None], Header()] = None):
|
88 |
-
"""Check API key before processing request"""
|
89 |
-
if x_api_key is None:
|
90 |
-
raise HTTPException(
|
91 |
-
status_code=401,
|
92 |
-
detail="Missing API key. Please provide a valid X-API-Key header."
|
93 |
-
)
|
94 |
-
if x_api_key != API_KEY:
|
95 |
-
raise HTTPException(
|
96 |
-
status_code=401,
|
97 |
-
detail="Invalid API key. Please provide a valid X-API-Key header."
|
98 |
-
)
|
99 |
-
return request
|
100 |
-
|
101 |
-
class FileAnalysisResult(BaseModel):
|
102 |
-
url: str
|
103 |
-
success: bool
|
104 |
-
classification: Optional[str] = None # "Real" or "Fake"
|
105 |
-
confidence: Optional[float] = None # 0.0 to 1.0
|
106 |
-
probability: Optional[float] = None # Raw sigmoid probability
|
107 |
-
raw_score: Optional[float] = None # Raw model output
|
108 |
-
duration: Optional[float] = None # Audio duration in seconds
|
109 |
-
message: str
|
110 |
-
processing_time: Optional[float] = None
|
111 |
-
error: Optional[str] = None
|
112 |
-
|
113 |
-
class MusicAnalysisResponse(BaseModel):
|
114 |
-
success: bool
|
115 |
-
total_files: int
|
116 |
-
successful_analyses: int
|
117 |
-
failed_analyses: int
|
118 |
-
results: List[FileAnalysisResult]
|
119 |
-
total_processing_time: float
|
120 |
-
message: str
|
121 |
-
|
122 |
-
class ErrorResponse(BaseModel):
|
123 |
-
success: bool
|
124 |
-
error: str
|
125 |
-
message: str
|
126 |
-
|
127 |
-
def cleanup_file(file_path: str):
|
128 |
-
"""Background task to cleanup temporary files"""
|
129 |
-
try:
|
130 |
-
if os.path.exists(file_path):
|
131 |
-
os.unlink(file_path)
|
132 |
-
except:
|
133 |
-
pass
|
134 |
-
|
135 |
-
def download_audio(url: str, max_size_mb: int = 100) -> str:
|
136 |
-
"""Download audio file from URL with size validation"""
|
137 |
-
try:
|
138 |
-
print(f"🔽 Downloading audio from: {url}")
|
139 |
-
|
140 |
-
# Check if URL is accessible
|
141 |
-
response = requests.head(str(url), timeout=10)
|
142 |
-
print(f"📊 Head response status: {response.status_code}")
|
143 |
-
|
144 |
-
# Check content size
|
145 |
-
content_length = response.headers.get('Content-Length')
|
146 |
-
if content_length:
|
147 |
-
size_mb = int(content_length) / (1024 * 1024)
|
148 |
-
print(f"📏 File size: {size_mb:.2f}MB")
|
149 |
-
if int(content_length) > max_size_mb * 1024 * 1024:
|
150 |
-
raise HTTPException(
|
151 |
-
status_code=413,
|
152 |
-
detail=f"File too large. Maximum size: {max_size_mb}MB"
|
153 |
-
)
|
154 |
-
|
155 |
-
# Download file
|
156 |
-
print("🔽 Starting download...")
|
157 |
-
response = requests.get(str(url), timeout=30, stream=True)
|
158 |
-
response.raise_for_status()
|
159 |
-
print(f"✅ Download response status: {response.status_code}")
|
160 |
-
|
161 |
-
# Create temporary file
|
162 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
163 |
-
downloaded_size = 0
|
164 |
-
for chunk in response.iter_content(chunk_size=8192):
|
165 |
-
downloaded_size += len(chunk)
|
166 |
-
if downloaded_size > max_size_mb * 1024 * 1024:
|
167 |
-
os.unlink(tmp_file.name)
|
168 |
-
raise HTTPException(
|
169 |
-
status_code=413,
|
170 |
-
detail=f"File too large. Maximum size: {max_size_mb}MB"
|
171 |
-
)
|
172 |
-
tmp_file.write(chunk)
|
173 |
-
|
174 |
-
print(f"💾 Downloaded {downloaded_size} bytes to {tmp_file.name}")
|
175 |
-
return tmp_file.name
|
176 |
-
|
177 |
-
except requests.exceptions.RequestException as e:
|
178 |
-
error_msg = f"Failed to download audio: {str(e)}"
|
179 |
-
print(f"❌ Download error: {error_msg}")
|
180 |
-
raise HTTPException(
|
181 |
-
status_code=400,
|
182 |
-
detail=error_msg
|
183 |
-
)
|
184 |
-
except Exception as e:
|
185 |
-
error_msg = f"Error downloading file: {str(e)}"
|
186 |
-
print(f"❌ Unexpected download error: {error_msg}")
|
187 |
-
raise HTTPException(
|
188 |
-
status_code=500,
|
189 |
-
detail=error_msg
|
190 |
-
)
|
191 |
-
|
192 |
-
def classify_audio(file_path: str) -> dict:
|
193 |
-
"""Classify audio file using the AI model"""
|
194 |
-
try:
|
195 |
-
print(f"🎵 Loading audio file: {file_path}")
|
196 |
-
|
197 |
-
# Check if file exists
|
198 |
-
if not os.path.exists(file_path):
|
199 |
-
raise ValueError(f"Audio file not found: {file_path}")
|
200 |
-
|
201 |
-
# Check file size
|
202 |
-
file_size = os.path.getsize(file_path)
|
203 |
-
print(f"📏 Audio file size: {file_size} bytes")
|
204 |
-
|
205 |
-
if file_size == 0:
|
206 |
-
raise ValueError("Audio file is empty")
|
207 |
-
|
208 |
-
# Load audio (model uses 16kHz sample rate)
|
209 |
-
print("🔊 Loading audio with librosa...")
|
210 |
-
audio, sr = librosa.load(file_path, sr=16000)
|
211 |
-
print(f"🎼 Audio loaded: {len(audio)} samples at {sr}Hz, duration: {len(audio)/sr:.2f}s")
|
212 |
-
|
213 |
-
if len(audio) == 0:
|
214 |
-
raise ValueError("Audio file contains no audio data")
|
215 |
-
|
216 |
-
# Convert to tensor and add batch dimension
|
217 |
-
print("🧮 Converting to tensor...")
|
218 |
-
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
|
219 |
-
print(f"📊 Tensor shape: {audio_tensor.shape}")
|
220 |
-
|
221 |
-
# Get prediction
|
222 |
-
print("🤖 Running model inference...")
|
223 |
-
with torch.no_grad():
|
224 |
-
output = model(audio_tensor)
|
225 |
-
print(f"📈 Model output: {output}")
|
226 |
-
|
227 |
-
# Convert logit to probability using sigmoid
|
228 |
-
prob = torch.sigmoid(output).item()
|
229 |
-
print(f"📊 Sigmoid probability: {prob}")
|
230 |
-
|
231 |
-
# Classify: prob < 0.5 = Real, prob >= 0.5 = Fake
|
232 |
-
if prob < 0.5:
|
233 |
-
classification = "Real"
|
234 |
-
confidence = (1 - prob) * 2 # Convert to 0-1 scale
|
235 |
-
else:
|
236 |
-
classification = "Fake"
|
237 |
-
confidence = (prob - 0.5) * 2 # Convert to 0-1 scale
|
238 |
-
|
239 |
-
result = {
|
240 |
-
"classification": classification,
|
241 |
-
"confidence": min(confidence, 1.0), # Cap at 1.0
|
242 |
-
"probability": prob,
|
243 |
-
"raw_score": output.item(),
|
244 |
-
"duration": len(audio) / sr
|
245 |
-
}
|
246 |
-
print(f"✅ Classification result: {result}")
|
247 |
-
return result
|
248 |
-
|
249 |
-
except Exception as e:
|
250 |
-
error_msg = f"Error analyzing audio: {str(e)}"
|
251 |
-
print(f"❌ Audio analysis error: {error_msg}")
|
252 |
-
import traceback
|
253 |
-
print(f"🔍 Traceback: {traceback.format_exc()}")
|
254 |
-
raise HTTPException(
|
255 |
-
status_code=500,
|
256 |
-
detail=error_msg
|
257 |
-
)
|
258 |
-
|
259 |
-
async def process_single_url(url: str) -> FileAnalysisResult:
|
260 |
-
"""Process a single URL and return result"""
|
261 |
-
start_time = time.time()
|
262 |
-
temp_file = None
|
263 |
-
|
264 |
-
try:
|
265 |
-
print(f"🚀 Processing URL: {url}")
|
266 |
-
|
267 |
-
# Download audio file
|
268 |
-
temp_file = download_audio(url)
|
269 |
-
print(f"✅ Download completed: {temp_file}")
|
270 |
-
|
271 |
-
# Classify audio
|
272 |
-
result = classify_audio(temp_file)
|
273 |
-
print(f"✅ Classification completed: {result}")
|
274 |
-
|
275 |
-
# Calculate processing time
|
276 |
-
processing_time = time.time() - start_time
|
277 |
-
|
278 |
-
# Prepare response
|
279 |
-
emoji = "🎤" if result["classification"] == "Real" else "🤖"
|
280 |
-
message = f'{emoji} Detected as {result["classification"].lower()} music'
|
281 |
-
|
282 |
-
return FileAnalysisResult(
|
283 |
-
url=str(url),
|
284 |
-
success=True,
|
285 |
-
classification=result["classification"],
|
286 |
-
confidence=result["confidence"],
|
287 |
-
probability=result["probability"],
|
288 |
-
raw_score=result["raw_score"],
|
289 |
-
duration=result["duration"],
|
290 |
-
message=message,
|
291 |
-
processing_time=processing_time
|
292 |
-
)
|
293 |
-
|
294 |
-
except Exception as e:
|
295 |
-
processing_time = time.time() - start_time
|
296 |
-
error_msg = str(e)
|
297 |
-
|
298 |
-
print(f"❌ Processing failed for {url}: {error_msg}")
|
299 |
-
import traceback
|
300 |
-
print(f"🔍 Full traceback: {traceback.format_exc()}")
|
301 |
-
|
302 |
-
return FileAnalysisResult(
|
303 |
-
url=str(url),
|
304 |
-
success=False,
|
305 |
-
message=f"❌ Failed to process: {error_msg}",
|
306 |
-
processing_time=processing_time,
|
307 |
-
error=error_msg
|
308 |
-
)
|
309 |
-
finally:
|
310 |
-
# Cleanup file in background
|
311 |
-
if temp_file:
|
312 |
-
try:
|
313 |
-
print(f"🧹 Cleaning up temporary file: {temp_file}")
|
314 |
-
os.unlink(temp_file)
|
315 |
-
except Exception as cleanup_error:
|
316 |
-
print(f"⚠️ Failed to cleanup {temp_file}: {cleanup_error}")
|
317 |
-
|
318 |
-
@app.post("/analyze", response_model=MusicAnalysisResponse)
|
319 |
-
async def analyze_music(
|
320 |
-
request: MusicAnalysisRequest = Depends(check_api_key_first)
|
321 |
-
):
|
322 |
-
"""
|
323 |
-
Analyze music from URL(s) to detect if it's AI-generated or human-created
|
324 |
-
|
325 |
-
- **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG)
|
326 |
-
- Returns classification results for each file
|
327 |
-
- Processes files concurrently for better performance when multiple URLs provided
|
328 |
-
"""
|
329 |
-
start_time = time.time()
|
330 |
-
|
331 |
-
if not model:
|
332 |
-
raise HTTPException(
|
333 |
-
status_code=503,
|
334 |
-
detail="Model not loaded. Please try again later."
|
335 |
-
)
|
336 |
-
|
337 |
-
if len(request.urls) > 50: # Limit processing
|
338 |
-
raise HTTPException(
|
339 |
-
status_code=400,
|
340 |
-
detail="Too many URLs. Maximum 50 files per request."
|
341 |
-
)
|
342 |
-
|
343 |
-
if len(request.urls) == 0:
|
344 |
-
raise HTTPException(
|
345 |
-
status_code=400,
|
346 |
-
detail="At least one URL is required."
|
347 |
-
)
|
348 |
-
|
349 |
-
try:
|
350 |
-
# Process all URLs concurrently with limited concurrency
|
351 |
-
semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads
|
352 |
-
|
353 |
-
async def process_with_semaphore(url):
|
354 |
-
async with semaphore:
|
355 |
-
return await process_single_url(str(url))
|
356 |
-
|
357 |
-
# Create tasks for all URLs
|
358 |
-
tasks = [process_with_semaphore(url) for url in request.urls]
|
359 |
-
|
360 |
-
# Wait for all tasks to complete
|
361 |
-
results = await asyncio.gather(*tasks, return_exceptions=True)
|
362 |
-
|
363 |
-
# Process results and handle any exceptions
|
364 |
-
processed_results = []
|
365 |
-
successful_count = 0
|
366 |
-
failed_count = 0
|
367 |
-
|
368 |
-
for i, result in enumerate(results):
|
369 |
-
if isinstance(result, Exception):
|
370 |
-
# Handle exception case
|
371 |
-
processed_results.append(FileAnalysisResult(
|
372 |
-
url=str(request.urls[i]),
|
373 |
-
success=False,
|
374 |
-
message=f"❌ Processing failed: {str(result)}",
|
375 |
-
error=str(result)
|
376 |
-
))
|
377 |
-
failed_count += 1
|
378 |
-
else:
|
379 |
-
processed_results.append(result)
|
380 |
-
if result.success:
|
381 |
-
successful_count += 1
|
382 |
-
else:
|
383 |
-
failed_count += 1
|
384 |
-
|
385 |
-
# Calculate total processing time
|
386 |
-
total_processing_time = time.time() - start_time
|
387 |
-
|
388 |
-
# Prepare summary message
|
389 |
-
total_files = len(request.urls)
|
390 |
-
if total_files == 1:
|
391 |
-
# Single file message
|
392 |
-
if successful_count == 1:
|
393 |
-
message = processed_results[0].message
|
394 |
-
else:
|
395 |
-
message = processed_results[0].message
|
396 |
-
else:
|
397 |
-
# Multiple files message
|
398 |
-
if successful_count == total_files:
|
399 |
-
message = f"✅ Successfully analyzed all {total_files} files"
|
400 |
-
elif successful_count > 0:
|
401 |
-
message = f"⚠️ Analyzed {successful_count}/{total_files} files successfully"
|
402 |
-
else:
|
403 |
-
message = f"❌ Failed to analyze any files"
|
404 |
-
|
405 |
-
return MusicAnalysisResponse(
|
406 |
-
success=successful_count > 0,
|
407 |
-
total_files=total_files,
|
408 |
-
successful_analyses=successful_count,
|
409 |
-
failed_analyses=failed_count,
|
410 |
-
results=processed_results,
|
411 |
-
total_processing_time=total_processing_time,
|
412 |
-
message=message
|
413 |
-
)
|
414 |
-
|
415 |
-
except Exception as e:
|
416 |
-
raise HTTPException(
|
417 |
-
status_code=500,
|
418 |
-
detail=f"Internal server error during processing: {str(e)}"
|
419 |
-
)
|
420 |
-
|
421 |
-
@app.get("/health")
|
422 |
-
async def health_check():
|
423 |
-
"""Health check endpoint"""
|
424 |
-
return {
|
425 |
-
"status": "healthy",
|
426 |
-
"model_loaded": model is not None,
|
427 |
-
"service": "Madverse Music API"
|
428 |
-
}
|
429 |
-
|
430 |
-
@app.get("/info")
|
431 |
-
async def get_info():
|
432 |
-
"""Get API information"""
|
433 |
-
return {
|
434 |
-
"name": "Madverse Music API",
|
435 |
-
"version": "1.0.0",
|
436 |
-
"description": "AI-powered music detection to identify AI-generated vs human-created music",
|
437 |
-
"model": "SpecTTTra-α (120s)",
|
438 |
-
"accuracy": {
|
439 |
-
"f1_score": 0.97,
|
440 |
-
"sensitivity": 0.96,
|
441 |
-
"specificity": 0.99
|
442 |
-
},
|
443 |
-
"supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"],
|
444 |
-
"max_file_size": "100MB",
|
445 |
-
"max_duration": "120 seconds",
|
446 |
-
"authentication": {
|
447 |
-
"required": True,
|
448 |
-
"type": "API Key",
|
449 |
-
"header": "X-API-Key",
|
450 |
-
"example": "X-API-Key: your-api-key-here"
|
451 |
-
},
|
452 |
-
"usage": {
|
453 |
-
"curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'"
|
454 |
-
}
|
455 |
-
}
|
456 |
-
|
457 |
-
def find_available_port(start_port: int = 8000, max_attempts: int = 10) -> int:
|
458 |
-
"""Find an available port starting from start_port"""
|
459 |
-
import random
|
460 |
-
import time
|
461 |
-
|
462 |
-
# Add some randomization to avoid race conditions
|
463 |
-
time.sleep(random.uniform(0.1, 0.5))
|
464 |
-
|
465 |
-
for port in range(start_port, start_port + max_attempts):
|
466 |
-
try:
|
467 |
-
# Try to bind to the port with proper error handling
|
468 |
-
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
469 |
-
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
470 |
-
s.bind(('0.0.0.0', port))
|
471 |
-
s.listen(1)
|
472 |
-
print(f"✅ Port {port} is available")
|
473 |
-
return port
|
474 |
-
except OSError as e:
|
475 |
-
print(f"❌ Port {port} is busy: {e}")
|
476 |
-
continue
|
477 |
-
|
478 |
-
# If no port found, raise an exception
|
479 |
-
raise RuntimeError(f"No available port found in range {start_port}-{start_port + max_attempts - 1}")
|
480 |
-
|
481 |
-
if __name__ == "__main__":
|
482 |
-
try:
|
483 |
-
# Check if we're in a Hugging Face environment
|
484 |
-
is_hf_space = os.getenv('SPACE_ID') is not None
|
485 |
-
hf_port = os.getenv('PORT') # HF Spaces sets this
|
486 |
-
|
487 |
-
if is_hf_space and hf_port:
|
488 |
-
# Use HF Spaces assigned port
|
489 |
-
port = int(hf_port)
|
490 |
-
print(f"🤗 Running in Hugging Face Spaces on port {port}")
|
491 |
-
elif is_hf_space:
|
492 |
-
print("🤗 Running in Hugging Face Spaces environment")
|
493 |
-
# Use standard HF Spaces port
|
494 |
-
port = 7860
|
495 |
-
else:
|
496 |
-
# Find an available port for local development
|
497 |
-
port = find_available_port(8000, 10)
|
498 |
-
|
499 |
-
print(f"🚀 Starting server on port {port}")
|
500 |
-
|
501 |
-
# For HF Spaces, don't use the retry logic as it might cause issues
|
502 |
-
if is_hf_space:
|
503 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
504 |
-
else:
|
505 |
-
# Add retry logic for local development
|
506 |
-
max_retries = 3
|
507 |
-
for attempt in range(max_retries):
|
508 |
-
try:
|
509 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
510 |
-
break # If successful, break out of retry loop
|
511 |
-
except OSError as e:
|
512 |
-
if "Address already in use" in str(e) and attempt < max_retries - 1:
|
513 |
-
print(f"⚠️ Port {port} became busy, trying next port...")
|
514 |
-
port = find_available_port(port + 1, 10)
|
515 |
-
print(f"🔄 Retrying on port {port}")
|
516 |
-
else:
|
517 |
-
raise
|
518 |
-
|
519 |
-
except RuntimeError as e:
|
520 |
-
print(f"❌ {e}")
|
521 |
-
print("💡 Suggestions:")
|
522 |
-
print(" 1. Wait a moment and try again (another instance might be shutting down)")
|
523 |
-
print(" 2. Manually specify a different port:")
|
524 |
-
print(" uvicorn app:app --host 0.0.0.0 --port 8001")
|
525 |
-
print(" 3. Check for running processes: ps aux | grep python")
|
526 |
-
except KeyboardInterrupt:
|
527 |
-
print("\n🛑 Server stopped by user")
|
528 |
-
except Exception as e:
|
529 |
-
print(f"❌ Failed to start server: {e}")
|
530 |
-
import traceback
|
531 |
traceback.print_exc()
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Madverse Music API
|
4 |
+
AI Music Detection Service
|
5 |
+
"""
|
6 |
+
|
7 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends
|
8 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
9 |
+
from pydantic import BaseModel, HttpUrl
|
10 |
+
import torch
|
11 |
+
import librosa
|
12 |
+
import tempfile
|
13 |
+
import os
|
14 |
+
import requests
|
15 |
+
from pathlib import Path
|
16 |
+
import time
|
17 |
+
from typing import Optional, Annotated, List, Union
|
18 |
+
import uvicorn
|
19 |
+
import asyncio
|
20 |
+
from contextlib import asynccontextmanager
|
21 |
+
import socket
|
22 |
+
|
23 |
+
# Global model variable
|
24 |
+
model = None
|
25 |
+
|
26 |
+
@asynccontextmanager
|
27 |
+
async def lifespan(app: FastAPI):
|
28 |
+
"""Application lifespan management"""
|
29 |
+
# Startup
|
30 |
+
global model
|
31 |
+
try:
|
32 |
+
from sonics import HFAudioClassifier
|
33 |
+
print("🔄 Loading Madverse Music AI model...")
|
34 |
+
|
35 |
+
# Set cache directory to a writable location
|
36 |
+
cache_dir = "/app/.cache" if os.path.exists("/app") else "./cache"
|
37 |
+
os.makedirs(cache_dir, exist_ok=True)
|
38 |
+
|
39 |
+
# Load model with explicit cache directory
|
40 |
+
model = HFAudioClassifier.from_pretrained(
|
41 |
+
"awsaf49/sonics-spectttra-alpha-120s",
|
42 |
+
cache_dir=cache_dir
|
43 |
+
)
|
44 |
+
model.eval()
|
45 |
+
print("✅ Model loaded successfully!")
|
46 |
+
except Exception as e:
|
47 |
+
print(f"❌ Failed to load model: {e}")
|
48 |
+
import traceback
|
49 |
+
traceback.print_exc()
|
50 |
+
raise
|
51 |
+
|
52 |
+
yield
|
53 |
+
|
54 |
+
# Shutdown
|
55 |
+
print("🔄 Shutting down...")
|
56 |
+
|
57 |
+
# Initialize FastAPI app with lifespan
|
58 |
+
app = FastAPI(
|
59 |
+
title="Madverse Music API",
|
60 |
+
description="AI-powered music detection API to identify AI-generated vs human-created music",
|
61 |
+
version="1.0.0",
|
62 |
+
docs_url="/",
|
63 |
+
redoc_url="/docs",
|
64 |
+
lifespan=lifespan
|
65 |
+
)
|
66 |
+
|
67 |
+
# API Key Configuration
|
68 |
+
API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo
|
69 |
+
|
70 |
+
async def verify_api_key(x_api_key: Annotated[Union[str, None], Header()] = None):
|
71 |
+
"""Verify API key from header"""
|
72 |
+
if x_api_key is None:
|
73 |
+
raise HTTPException(
|
74 |
+
status_code=401,
|
75 |
+
detail="Missing API key. Please provide a valid X-API-Key header."
|
76 |
+
)
|
77 |
+
if x_api_key != API_KEY:
|
78 |
+
raise HTTPException(
|
79 |
+
status_code=401,
|
80 |
+
detail="Invalid API key. Please provide a valid X-API-Key header."
|
81 |
+
)
|
82 |
+
return x_api_key
|
83 |
+
|
84 |
+
class MusicAnalysisRequest(BaseModel):
|
85 |
+
urls: List[HttpUrl]
|
86 |
+
|
87 |
+
def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[Union[str, None], Header()] = None):
|
88 |
+
"""Check API key before processing request"""
|
89 |
+
if x_api_key is None:
|
90 |
+
raise HTTPException(
|
91 |
+
status_code=401,
|
92 |
+
detail="Missing API key. Please provide a valid X-API-Key header."
|
93 |
+
)
|
94 |
+
if x_api_key != API_KEY:
|
95 |
+
raise HTTPException(
|
96 |
+
status_code=401,
|
97 |
+
detail="Invalid API key. Please provide a valid X-API-Key header."
|
98 |
+
)
|
99 |
+
return request
|
100 |
+
|
101 |
+
class FileAnalysisResult(BaseModel):
|
102 |
+
url: str
|
103 |
+
success: bool
|
104 |
+
classification: Optional[str] = None # "Real" or "Fake"
|
105 |
+
confidence: Optional[float] = None # 0.0 to 1.0
|
106 |
+
probability: Optional[float] = None # Raw sigmoid probability
|
107 |
+
raw_score: Optional[float] = None # Raw model output
|
108 |
+
duration: Optional[float] = None # Audio duration in seconds
|
109 |
+
message: str
|
110 |
+
processing_time: Optional[float] = None
|
111 |
+
error: Optional[str] = None
|
112 |
+
|
113 |
+
class MusicAnalysisResponse(BaseModel):
|
114 |
+
success: bool
|
115 |
+
total_files: int
|
116 |
+
successful_analyses: int
|
117 |
+
failed_analyses: int
|
118 |
+
results: List[FileAnalysisResult]
|
119 |
+
total_processing_time: float
|
120 |
+
message: str
|
121 |
+
|
122 |
+
class ErrorResponse(BaseModel):
|
123 |
+
success: bool
|
124 |
+
error: str
|
125 |
+
message: str
|
126 |
+
|
127 |
+
def cleanup_file(file_path: str):
|
128 |
+
"""Background task to cleanup temporary files"""
|
129 |
+
try:
|
130 |
+
if os.path.exists(file_path):
|
131 |
+
os.unlink(file_path)
|
132 |
+
except:
|
133 |
+
pass
|
134 |
+
|
135 |
+
def download_audio(url: str, max_size_mb: int = 100) -> str:
|
136 |
+
"""Download audio file from URL with size validation"""
|
137 |
+
try:
|
138 |
+
print(f"🔽 Downloading audio from: {url}")
|
139 |
+
|
140 |
+
# Check if URL is accessible
|
141 |
+
response = requests.head(str(url), timeout=10)
|
142 |
+
print(f"📊 Head response status: {response.status_code}")
|
143 |
+
|
144 |
+
# Check content size
|
145 |
+
content_length = response.headers.get('Content-Length')
|
146 |
+
if content_length:
|
147 |
+
size_mb = int(content_length) / (1024 * 1024)
|
148 |
+
print(f"📏 File size: {size_mb:.2f}MB")
|
149 |
+
if int(content_length) > max_size_mb * 1024 * 1024:
|
150 |
+
raise HTTPException(
|
151 |
+
status_code=413,
|
152 |
+
detail=f"File too large. Maximum size: {max_size_mb}MB"
|
153 |
+
)
|
154 |
+
|
155 |
+
# Download file
|
156 |
+
print("🔽 Starting download...")
|
157 |
+
response = requests.get(str(url), timeout=30, stream=True)
|
158 |
+
response.raise_for_status()
|
159 |
+
print(f"✅ Download response status: {response.status_code}")
|
160 |
+
|
161 |
+
# Create temporary file
|
162 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
163 |
+
downloaded_size = 0
|
164 |
+
for chunk in response.iter_content(chunk_size=8192):
|
165 |
+
downloaded_size += len(chunk)
|
166 |
+
if downloaded_size > max_size_mb * 1024 * 1024:
|
167 |
+
os.unlink(tmp_file.name)
|
168 |
+
raise HTTPException(
|
169 |
+
status_code=413,
|
170 |
+
detail=f"File too large. Maximum size: {max_size_mb}MB"
|
171 |
+
)
|
172 |
+
tmp_file.write(chunk)
|
173 |
+
|
174 |
+
print(f"💾 Downloaded {downloaded_size} bytes to {tmp_file.name}")
|
175 |
+
return tmp_file.name
|
176 |
+
|
177 |
+
except requests.exceptions.RequestException as e:
|
178 |
+
error_msg = f"Failed to download audio: {str(e)}"
|
179 |
+
print(f"❌ Download error: {error_msg}")
|
180 |
+
raise HTTPException(
|
181 |
+
status_code=400,
|
182 |
+
detail=error_msg
|
183 |
+
)
|
184 |
+
except Exception as e:
|
185 |
+
error_msg = f"Error downloading file: {str(e)}"
|
186 |
+
print(f"❌ Unexpected download error: {error_msg}")
|
187 |
+
raise HTTPException(
|
188 |
+
status_code=500,
|
189 |
+
detail=error_msg
|
190 |
+
)
|
191 |
+
|
192 |
+
def classify_audio(file_path: str) -> dict:
|
193 |
+
"""Classify audio file using the AI model"""
|
194 |
+
try:
|
195 |
+
print(f"🎵 Loading audio file: {file_path}")
|
196 |
+
|
197 |
+
# Check if file exists
|
198 |
+
if not os.path.exists(file_path):
|
199 |
+
raise ValueError(f"Audio file not found: {file_path}")
|
200 |
+
|
201 |
+
# Check file size
|
202 |
+
file_size = os.path.getsize(file_path)
|
203 |
+
print(f"📏 Audio file size: {file_size} bytes")
|
204 |
+
|
205 |
+
if file_size == 0:
|
206 |
+
raise ValueError("Audio file is empty")
|
207 |
+
|
208 |
+
# Load audio (model uses 16kHz sample rate)
|
209 |
+
print("🔊 Loading audio with librosa...")
|
210 |
+
audio, sr = librosa.load(file_path, sr=16000)
|
211 |
+
print(f"🎼 Audio loaded: {len(audio)} samples at {sr}Hz, duration: {len(audio)/sr:.2f}s")
|
212 |
+
|
213 |
+
if len(audio) == 0:
|
214 |
+
raise ValueError("Audio file contains no audio data")
|
215 |
+
|
216 |
+
# Convert to tensor and add batch dimension
|
217 |
+
print("🧮 Converting to tensor...")
|
218 |
+
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
|
219 |
+
print(f"📊 Tensor shape: {audio_tensor.shape}")
|
220 |
+
|
221 |
+
# Get prediction
|
222 |
+
print("🤖 Running model inference...")
|
223 |
+
with torch.no_grad():
|
224 |
+
output = model(audio_tensor)
|
225 |
+
print(f"📈 Model output: {output}")
|
226 |
+
|
227 |
+
# Convert logit to probability using sigmoid
|
228 |
+
prob = torch.sigmoid(output).item()
|
229 |
+
print(f"📊 Sigmoid probability: {prob}")
|
230 |
+
|
231 |
+
# Classify: prob < 0.5 = Real, prob >= 0.5 = Fake
|
232 |
+
if prob < 0.5:
|
233 |
+
classification = "Real"
|
234 |
+
confidence = (1 - prob) * 2 # Convert to 0-1 scale
|
235 |
+
else:
|
236 |
+
classification = "Fake"
|
237 |
+
confidence = (prob - 0.5) * 2 # Convert to 0-1 scale
|
238 |
+
|
239 |
+
result = {
|
240 |
+
"classification": classification,
|
241 |
+
"confidence": min(confidence, 1.0), # Cap at 1.0
|
242 |
+
"probability": prob,
|
243 |
+
"raw_score": output.item(),
|
244 |
+
"duration": len(audio) / sr
|
245 |
+
}
|
246 |
+
print(f"✅ Classification result: {result}")
|
247 |
+
return result
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
error_msg = f"Error analyzing audio: {str(e)}"
|
251 |
+
print(f"❌ Audio analysis error: {error_msg}")
|
252 |
+
import traceback
|
253 |
+
print(f"🔍 Traceback: {traceback.format_exc()}")
|
254 |
+
raise HTTPException(
|
255 |
+
status_code=500,
|
256 |
+
detail=error_msg
|
257 |
+
)
|
258 |
+
|
259 |
+
async def process_single_url(url: str) -> FileAnalysisResult:
|
260 |
+
"""Process a single URL and return result"""
|
261 |
+
start_time = time.time()
|
262 |
+
temp_file = None
|
263 |
+
|
264 |
+
try:
|
265 |
+
print(f"🚀 Processing URL: {url}")
|
266 |
+
|
267 |
+
# Download audio file
|
268 |
+
temp_file = download_audio(url)
|
269 |
+
print(f"✅ Download completed: {temp_file}")
|
270 |
+
|
271 |
+
# Classify audio
|
272 |
+
result = classify_audio(temp_file)
|
273 |
+
print(f"✅ Classification completed: {result}")
|
274 |
+
|
275 |
+
# Calculate processing time
|
276 |
+
processing_time = time.time() - start_time
|
277 |
+
|
278 |
+
# Prepare response
|
279 |
+
emoji = "🎤" if result["classification"] == "Real" else "🤖"
|
280 |
+
message = f'{emoji} Detected as {result["classification"].lower()} music'
|
281 |
+
|
282 |
+
return FileAnalysisResult(
|
283 |
+
url=str(url),
|
284 |
+
success=True,
|
285 |
+
classification=result["classification"],
|
286 |
+
confidence=result["confidence"],
|
287 |
+
probability=result["probability"],
|
288 |
+
raw_score=result["raw_score"],
|
289 |
+
duration=result["duration"],
|
290 |
+
message=message,
|
291 |
+
processing_time=processing_time
|
292 |
+
)
|
293 |
+
|
294 |
+
except Exception as e:
|
295 |
+
processing_time = time.time() - start_time
|
296 |
+
error_msg = str(e)
|
297 |
+
|
298 |
+
print(f"❌ Processing failed for {url}: {error_msg}")
|
299 |
+
import traceback
|
300 |
+
print(f"🔍 Full traceback: {traceback.format_exc()}")
|
301 |
+
|
302 |
+
return FileAnalysisResult(
|
303 |
+
url=str(url),
|
304 |
+
success=False,
|
305 |
+
message=f"❌ Failed to process: {error_msg}",
|
306 |
+
processing_time=processing_time,
|
307 |
+
error=error_msg
|
308 |
+
)
|
309 |
+
finally:
|
310 |
+
# Cleanup file in background
|
311 |
+
if temp_file:
|
312 |
+
try:
|
313 |
+
print(f"🧹 Cleaning up temporary file: {temp_file}")
|
314 |
+
os.unlink(temp_file)
|
315 |
+
except Exception as cleanup_error:
|
316 |
+
print(f"⚠️ Failed to cleanup {temp_file}: {cleanup_error}")
|
317 |
+
|
318 |
+
@app.post("/analyze", response_model=MusicAnalysisResponse)
|
319 |
+
async def analyze_music(
|
320 |
+
request: MusicAnalysisRequest = Depends(check_api_key_first)
|
321 |
+
):
|
322 |
+
"""
|
323 |
+
Analyze music from URL(s) to detect if it's AI-generated or human-created
|
324 |
+
|
325 |
+
- **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG)
|
326 |
+
- Returns classification results for each file
|
327 |
+
- Processes files concurrently for better performance when multiple URLs provided
|
328 |
+
"""
|
329 |
+
start_time = time.time()
|
330 |
+
|
331 |
+
if not model:
|
332 |
+
raise HTTPException(
|
333 |
+
status_code=503,
|
334 |
+
detail="Model not loaded. Please try again later."
|
335 |
+
)
|
336 |
+
|
337 |
+
if len(request.urls) > 50: # Limit processing
|
338 |
+
raise HTTPException(
|
339 |
+
status_code=400,
|
340 |
+
detail="Too many URLs. Maximum 50 files per request."
|
341 |
+
)
|
342 |
+
|
343 |
+
if len(request.urls) == 0:
|
344 |
+
raise HTTPException(
|
345 |
+
status_code=400,
|
346 |
+
detail="At least one URL is required."
|
347 |
+
)
|
348 |
+
|
349 |
+
try:
|
350 |
+
# Process all URLs concurrently with limited concurrency
|
351 |
+
semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads
|
352 |
+
|
353 |
+
async def process_with_semaphore(url):
|
354 |
+
async with semaphore:
|
355 |
+
return await process_single_url(str(url))
|
356 |
+
|
357 |
+
# Create tasks for all URLs
|
358 |
+
tasks = [process_with_semaphore(url) for url in request.urls]
|
359 |
+
|
360 |
+
# Wait for all tasks to complete
|
361 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
362 |
+
|
363 |
+
# Process results and handle any exceptions
|
364 |
+
processed_results = []
|
365 |
+
successful_count = 0
|
366 |
+
failed_count = 0
|
367 |
+
|
368 |
+
for i, result in enumerate(results):
|
369 |
+
if isinstance(result, Exception):
|
370 |
+
# Handle exception case
|
371 |
+
processed_results.append(FileAnalysisResult(
|
372 |
+
url=str(request.urls[i]),
|
373 |
+
success=False,
|
374 |
+
message=f"❌ Processing failed: {str(result)}",
|
375 |
+
error=str(result)
|
376 |
+
))
|
377 |
+
failed_count += 1
|
378 |
+
else:
|
379 |
+
processed_results.append(result)
|
380 |
+
if result.success:
|
381 |
+
successful_count += 1
|
382 |
+
else:
|
383 |
+
failed_count += 1
|
384 |
+
|
385 |
+
# Calculate total processing time
|
386 |
+
total_processing_time = time.time() - start_time
|
387 |
+
|
388 |
+
# Prepare summary message
|
389 |
+
total_files = len(request.urls)
|
390 |
+
if total_files == 1:
|
391 |
+
# Single file message
|
392 |
+
if successful_count == 1:
|
393 |
+
message = processed_results[0].message
|
394 |
+
else:
|
395 |
+
message = processed_results[0].message
|
396 |
+
else:
|
397 |
+
# Multiple files message
|
398 |
+
if successful_count == total_files:
|
399 |
+
message = f"✅ Successfully analyzed all {total_files} files"
|
400 |
+
elif successful_count > 0:
|
401 |
+
message = f"⚠️ Analyzed {successful_count}/{total_files} files successfully"
|
402 |
+
else:
|
403 |
+
message = f"❌ Failed to analyze any files"
|
404 |
+
|
405 |
+
return MusicAnalysisResponse(
|
406 |
+
success=successful_count > 0,
|
407 |
+
total_files=total_files,
|
408 |
+
successful_analyses=successful_count,
|
409 |
+
failed_analyses=failed_count,
|
410 |
+
results=processed_results,
|
411 |
+
total_processing_time=total_processing_time,
|
412 |
+
message=message
|
413 |
+
)
|
414 |
+
|
415 |
+
except Exception as e:
|
416 |
+
raise HTTPException(
|
417 |
+
status_code=500,
|
418 |
+
detail=f"Internal server error during processing: {str(e)}"
|
419 |
+
)
|
420 |
+
|
421 |
+
@app.get("/health")
|
422 |
+
async def health_check():
|
423 |
+
"""Health check endpoint"""
|
424 |
+
return {
|
425 |
+
"status": "healthy",
|
426 |
+
"model_loaded": model is not None,
|
427 |
+
"service": "Madverse Music API"
|
428 |
+
}
|
429 |
+
|
430 |
+
@app.get("/info")
|
431 |
+
async def get_info():
|
432 |
+
"""Get API information"""
|
433 |
+
return {
|
434 |
+
"name": "Madverse Music API",
|
435 |
+
"version": "1.0.0",
|
436 |
+
"description": "AI-powered music detection to identify AI-generated vs human-created music",
|
437 |
+
"model": "SpecTTTra-α (120s)",
|
438 |
+
"accuracy": {
|
439 |
+
"f1_score": 0.97,
|
440 |
+
"sensitivity": 0.96,
|
441 |
+
"specificity": 0.99
|
442 |
+
},
|
443 |
+
"supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"],
|
444 |
+
"max_file_size": "100MB",
|
445 |
+
"max_duration": "120 seconds",
|
446 |
+
"authentication": {
|
447 |
+
"required": True,
|
448 |
+
"type": "API Key",
|
449 |
+
"header": "X-API-Key",
|
450 |
+
"example": "X-API-Key: your-api-key-here"
|
451 |
+
},
|
452 |
+
"usage": {
|
453 |
+
"curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'"
|
454 |
+
}
|
455 |
+
}
|
456 |
+
|
457 |
+
def find_available_port(start_port: int = 8000, max_attempts: int = 10) -> int:
|
458 |
+
"""Find an available port starting from start_port"""
|
459 |
+
import random
|
460 |
+
import time
|
461 |
+
|
462 |
+
# Add some randomization to avoid race conditions
|
463 |
+
time.sleep(random.uniform(0.1, 0.5))
|
464 |
+
|
465 |
+
for port in range(start_port, start_port + max_attempts):
|
466 |
+
try:
|
467 |
+
# Try to bind to the port with proper error handling
|
468 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
469 |
+
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
470 |
+
s.bind(('0.0.0.0', port))
|
471 |
+
s.listen(1)
|
472 |
+
print(f"✅ Port {port} is available")
|
473 |
+
return port
|
474 |
+
except OSError as e:
|
475 |
+
print(f"❌ Port {port} is busy: {e}")
|
476 |
+
continue
|
477 |
+
|
478 |
+
# If no port found, raise an exception
|
479 |
+
raise RuntimeError(f"No available port found in range {start_port}-{start_port + max_attempts - 1}")
|
480 |
+
|
481 |
+
if __name__ == "__main__":
|
482 |
+
try:
|
483 |
+
# Check if we're in a Hugging Face environment
|
484 |
+
is_hf_space = os.getenv('SPACE_ID') is not None
|
485 |
+
hf_port = os.getenv('PORT') # HF Spaces sets this
|
486 |
+
|
487 |
+
if is_hf_space and hf_port:
|
488 |
+
# Use HF Spaces assigned port
|
489 |
+
port = int(hf_port)
|
490 |
+
print(f"🤗 Running in Hugging Face Spaces on port {port}")
|
491 |
+
elif is_hf_space:
|
492 |
+
print("🤗 Running in Hugging Face Spaces environment")
|
493 |
+
# Use standard HF Spaces port
|
494 |
+
port = 7860
|
495 |
+
else:
|
496 |
+
# Find an available port for local development
|
497 |
+
port = find_available_port(8000, 10)
|
498 |
+
|
499 |
+
print(f"🚀 Starting server on port {port}")
|
500 |
+
|
501 |
+
# For HF Spaces, don't use the retry logic as it might cause issues
|
502 |
+
if is_hf_space:
|
503 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
504 |
+
else:
|
505 |
+
# Add retry logic for local development
|
506 |
+
max_retries = 3
|
507 |
+
for attempt in range(max_retries):
|
508 |
+
try:
|
509 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
510 |
+
break # If successful, break out of retry loop
|
511 |
+
except OSError as e:
|
512 |
+
if "Address already in use" in str(e) and attempt < max_retries - 1:
|
513 |
+
print(f"⚠️ Port {port} became busy, trying next port...")
|
514 |
+
port = find_available_port(port + 1, 10)
|
515 |
+
print(f"🔄 Retrying on port {port}")
|
516 |
+
else:
|
517 |
+
raise
|
518 |
+
|
519 |
+
except RuntimeError as e:
|
520 |
+
print(f"❌ {e}")
|
521 |
+
print("💡 Suggestions:")
|
522 |
+
print(" 1. Wait a moment and try again (another instance might be shutting down)")
|
523 |
+
print(" 2. Manually specify a different port:")
|
524 |
+
print(" uvicorn app:app --host 0.0.0.0 --port 8001")
|
525 |
+
print(" 3. Check for running processes: ps aux | grep python")
|
526 |
+
except KeyboardInterrupt:
|
527 |
+
print("\n🛑 Server stopped by user")
|
528 |
+
except Exception as e:
|
529 |
+
print(f"❌ Failed to start server: {e}")
|
530 |
+
import traceback
|
531 |
traceback.print_exc()
|