#!/usr/bin/env python3 """ Madverse Music API AI Music Detection Service """ # Configure numba before any other imports to avoid caching issues import os os.environ.setdefault('NUMBA_DISABLE_JIT', '1') os.environ.setdefault('NUMBA_CACHE_DIR', '/app/.cache/numba') from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from pydantic import BaseModel, HttpUrl import torch import soundfile as sf import scipy.signal import tempfile import requests from pathlib import Path import time from typing import Optional, Annotated, List, Union import uvicorn import asyncio from contextlib import asynccontextmanager import socket import numpy as np # Global model variable model = None @asynccontextmanager async def lifespan(app: FastAPI): """Application lifespan management""" # Startup global model try: from sonics import HFAudioClassifier print("๐Ÿ”„ Loading Madverse Music AI model...") # Set cache directory to a writable location cache_dir = "/app/.cache" if os.path.exists("/app") else "./cache" os.makedirs(cache_dir, exist_ok=True) # Load model with explicit cache directory model = HFAudioClassifier.from_pretrained( "awsaf49/sonics-spectttra-alpha-120s", cache_dir=cache_dir ) model.eval() print("โœ… Model loaded successfully!") except Exception as e: print(f"โŒ Failed to load model: {e}") import traceback traceback.print_exc() raise yield # Shutdown print("๐Ÿ”„ Shutting down...") # Initialize FastAPI app with lifespan app = FastAPI( title="Madverse Music API", description="AI-powered music detection API to identify AI-generated vs human-created music", version="1.0.0", docs_url="/", redoc_url="/docs", lifespan=lifespan ) # API Key Configuration API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo async def verify_api_key(x_api_key: Annotated[Union[str, None], Header()] = None): """Verify API key from header""" if x_api_key is None: raise HTTPException( status_code=401, detail="Missing API key. Please provide a valid X-API-Key header." ) if x_api_key != API_KEY: raise HTTPException( status_code=401, detail="Invalid API key. Please provide a valid X-API-Key header." ) return x_api_key class MusicAnalysisRequest(BaseModel): urls: List[HttpUrl] def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[Union[str, None], Header()] = None): """Check API key before processing request""" if x_api_key is None: raise HTTPException( status_code=401, detail="Missing API key. Please provide a valid X-API-Key header." ) if x_api_key != API_KEY: raise HTTPException( status_code=401, detail="Invalid API key. Please provide a valid X-API-Key header." ) return request class FileAnalysisResult(BaseModel): url: str success: bool classification: Optional[str] = None # "Real" or "Fake" confidence: Optional[float] = None # 0.0 to 1.0 probability: Optional[float] = None # Raw sigmoid probability raw_score: Optional[float] = None # Raw model output duration: Optional[float] = None # Audio duration in seconds message: str processing_time: Optional[float] = None error: Optional[str] = None class MusicAnalysisResponse(BaseModel): success: bool total_files: int successful_analyses: int failed_analyses: int results: List[FileAnalysisResult] total_processing_time: float message: str class ErrorResponse(BaseModel): success: bool error: str message: str def cleanup_file(file_path: str): """Background task to cleanup temporary files""" try: if os.path.exists(file_path): os.unlink(file_path) except: pass def download_audio(url: str, max_size_mb: int = 100) -> str: """Download audio file from URL with size validation""" try: print(f"๐Ÿ”ฝ Downloading audio from: {url}") # Check if URL is accessible response = requests.head(str(url), timeout=10) print(f"๐Ÿ“Š Head response status: {response.status_code}") # Check content size content_length = response.headers.get('Content-Length') if content_length: size_mb = int(content_length) / (1024 * 1024) print(f"๐Ÿ“ File size: {size_mb:.2f}MB") if int(content_length) > max_size_mb * 1024 * 1024: raise HTTPException( status_code=413, detail=f"File too large. Maximum size: {max_size_mb}MB" ) # Download file print("๐Ÿ”ฝ Starting download...") response = requests.get(str(url), timeout=30, stream=True) response.raise_for_status() print(f"โœ… Download response status: {response.status_code}") # Create temporary file with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file: downloaded_size = 0 for chunk in response.iter_content(chunk_size=8192): downloaded_size += len(chunk) if downloaded_size > max_size_mb * 1024 * 1024: os.unlink(tmp_file.name) raise HTTPException( status_code=413, detail=f"File too large. Maximum size: {max_size_mb}MB" ) tmp_file.write(chunk) print(f"๐Ÿ’พ Downloaded {downloaded_size} bytes to {tmp_file.name}") return tmp_file.name except requests.exceptions.RequestException as e: error_msg = f"Failed to download audio: {str(e)}" print(f"โŒ Download error: {error_msg}") raise HTTPException( status_code=400, detail=error_msg ) except Exception as e: error_msg = f"Error downloading file: {str(e)}" print(f"โŒ Unexpected download error: {error_msg}") raise HTTPException( status_code=500, detail=error_msg ) def classify_audio(file_path: str) -> dict: """Classify audio file using the AI model""" try: print(f"๐ŸŽต Loading audio file: {file_path}") # Check if file exists if not os.path.exists(file_path): raise ValueError(f"Audio file not found: {file_path}") # Check file size file_size = os.path.getsize(file_path) print(f"๐Ÿ“ Audio file size: {file_size} bytes") if file_size == 0: raise ValueError("Audio file is empty") # Load audio with soundfile print("๐Ÿ”Š Loading audio with soundfile...") audio, sr = sf.read(file_path) print(f"๐ŸŽผ Audio loaded: {len(audio)} samples at {sr}Hz, duration: {len(audio)/sr:.2f}s") if len(audio) == 0: raise ValueError("Audio file contains no audio data") # Convert to mono if stereo if audio.ndim > 1: print("๐Ÿ”€ Converting stereo to mono...") audio = np.mean(audio, axis=1) # Resample to 16kHz if needed (model requirement) target_sr = 16000 if sr != target_sr: print(f"๐Ÿ”„ Resampling from {sr}Hz to {target_sr}Hz...") # Calculate the number of samples after resampling num_samples = int(len(audio) * target_sr / sr) audio = scipy.signal.resample(audio, num_samples) sr = target_sr print(f"โœ… Resampled: {len(audio)} samples at {sr}Hz") # Convert to tensor and add batch dimension print("๐Ÿงฎ Converting to tensor...") audio_tensor = torch.FloatTensor(audio).unsqueeze(0) print(f"๐Ÿ“Š Tensor shape: {audio_tensor.shape}") # Get prediction print("๐Ÿค– Running model inference...") with torch.no_grad(): output = model(audio_tensor) print(f"๐Ÿ“ˆ Model output: {output}") # Convert logit to probability using sigmoid prob = torch.sigmoid(output).item() print(f"๐Ÿ“Š Sigmoid probability: {prob}") # Classify: prob < 0.5 = Real, prob >= 0.5 = Fake if prob < 0.5: classification = "Real" confidence = (1 - prob) * 2 # Convert to 0-1 scale else: classification = "Fake" confidence = (prob - 0.5) * 2 # Convert to 0-1 scale result = { "classification": classification, "confidence": min(confidence, 1.0), # Cap at 1.0 "probability": prob, "raw_score": output.item(), "duration": len(audio) / sr } print(f"โœ… Classification result: {result}") return result except Exception as e: error_msg = f"Error analyzing audio: {str(e)}" print(f"โŒ Audio analysis error: {error_msg}") import traceback print(f"๐Ÿ” Traceback: {traceback.format_exc()}") raise HTTPException( status_code=500, detail=error_msg ) async def process_single_url(url: str) -> FileAnalysisResult: """Process a single URL and return result""" start_time = time.time() temp_file = None try: print(f"๐Ÿš€ Processing URL: {url}") # Download audio file temp_file = download_audio(url) print(f"โœ… Download completed: {temp_file}") # Classify audio result = classify_audio(temp_file) print(f"โœ… Classification completed: {result}") # Calculate processing time processing_time = time.time() - start_time # Prepare response emoji = "๐ŸŽค" if result["classification"] == "Real" else "๐Ÿค–" message = f'{emoji} Detected as {result["classification"].lower()} music' return FileAnalysisResult( url=str(url), success=True, classification=result["classification"], confidence=result["confidence"], probability=result["probability"], raw_score=result["raw_score"], duration=result["duration"], message=message, processing_time=processing_time ) except Exception as e: processing_time = time.time() - start_time error_msg = str(e) print(f"โŒ Processing failed for {url}: {error_msg}") import traceback print(f"๐Ÿ” Full traceback: {traceback.format_exc()}") return FileAnalysisResult( url=str(url), success=False, message=f"โŒ Failed to process: {error_msg}", processing_time=processing_time, error=error_msg ) finally: # Cleanup file in background if temp_file: try: print(f"๐Ÿงน Cleaning up temporary file: {temp_file}") os.unlink(temp_file) except Exception as cleanup_error: print(f"โš ๏ธ Failed to cleanup {temp_file}: {cleanup_error}") @app.post("/analyze", response_model=MusicAnalysisResponse) async def analyze_music( request: MusicAnalysisRequest = Depends(check_api_key_first) ): """ Analyze music from URL(s) to detect if it's AI-generated or human-created - **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG) - Returns classification results for each file - Processes files concurrently for better performance when multiple URLs provided """ start_time = time.time() if not model: raise HTTPException( status_code=503, detail="Model not loaded. Please try again later." ) if len(request.urls) > 50: # Limit processing raise HTTPException( status_code=400, detail="Too many URLs. Maximum 50 files per request." ) if len(request.urls) == 0: raise HTTPException( status_code=400, detail="At least one URL is required." ) try: # Process all URLs concurrently with limited concurrency semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads async def process_with_semaphore(url): async with semaphore: return await process_single_url(str(url)) # Create tasks for all URLs tasks = [process_with_semaphore(url) for url in request.urls] # Wait for all tasks to complete results = await asyncio.gather(*tasks, return_exceptions=True) # Process results and handle any exceptions processed_results = [] successful_count = 0 failed_count = 0 for i, result in enumerate(results): if isinstance(result, Exception): # Handle exception case processed_results.append(FileAnalysisResult( url=str(request.urls[i]), success=False, message=f"โŒ Processing failed: {str(result)}", error=str(result) )) failed_count += 1 else: processed_results.append(result) if result.success: successful_count += 1 else: failed_count += 1 # Calculate total processing time total_processing_time = time.time() - start_time # Prepare summary message total_files = len(request.urls) if total_files == 1: # Single file message if successful_count == 1: message = processed_results[0].message else: message = processed_results[0].message else: # Multiple files message if successful_count == total_files: message = f"โœ… Successfully analyzed all {total_files} files" elif successful_count > 0: message = f"โš ๏ธ Analyzed {successful_count}/{total_files} files successfully" else: message = f"โŒ Failed to analyze any files" return MusicAnalysisResponse( success=successful_count > 0, total_files=total_files, successful_analyses=successful_count, failed_analyses=failed_count, results=processed_results, total_processing_time=total_processing_time, message=message ) except Exception as e: raise HTTPException( status_code=500, detail=f"Internal server error during processing: {str(e)}" ) @app.get("/health") async def health_check(): """Health check endpoint""" return { "status": "healthy", "model_loaded": model is not None, "service": "Madverse Music API" } @app.get("/info") async def get_info(): """Get API information""" return { "name": "Madverse Music API", "version": "1.0.0", "description": "AI-powered music detection to identify AI-generated vs human-created music", "model": "SpecTTTra-ฮฑ (120s)", "accuracy": { "f1_score": 0.97, "sensitivity": 0.96, "specificity": 0.99 }, "supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"], "max_file_size": "100MB", "max_duration": "120 seconds", "authentication": { "required": True, "type": "API Key", "header": "X-API-Key", "example": "X-API-Key: your-api-key-here" }, "usage": { "curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'" } } def find_available_port(start_port: int = 8000, max_attempts: int = 10) -> int: """Find an available port starting from start_port""" import random import time # Add some randomization to avoid race conditions time.sleep(random.uniform(0.1, 0.5)) for port in range(start_port, start_port + max_attempts): try: # Try to bind to the port with proper error handling with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(('0.0.0.0', port)) s.listen(1) print(f"โœ… Port {port} is available") return port except OSError as e: print(f"โŒ Port {port} is busy: {e}") continue # If no port found, raise an exception raise RuntimeError(f"No available port found in range {start_port}-{start_port + max_attempts - 1}") if __name__ == "__main__": try: # Check if we're in a Hugging Face environment is_hf_space = os.getenv('SPACE_ID') is not None hf_port = os.getenv('PORT') # HF Spaces sets this if is_hf_space and hf_port: # Use HF Spaces assigned port port = int(hf_port) print(f"๐Ÿค— Running in Hugging Face Spaces on port {port}") elif is_hf_space: print("๐Ÿค— Running in Hugging Face Spaces environment") # Use standard HF Spaces port port = 7860 else: # Find an available port for local development port = find_available_port(8000, 10) print(f"๐Ÿš€ Starting server on port {port}") # For HF Spaces, don't use the retry logic as it might cause issues if is_hf_space: uvicorn.run(app, host="0.0.0.0", port=port) else: # Add retry logic for local development max_retries = 3 for attempt in range(max_retries): try: uvicorn.run(app, host="0.0.0.0", port=port) break # If successful, break out of retry loop except OSError as e: if "Address already in use" in str(e) and attempt < max_retries - 1: print(f"โš ๏ธ Port {port} became busy, trying next port...") port = find_available_port(port + 1, 10) print(f"๐Ÿ”„ Retrying on port {port}") else: raise except RuntimeError as e: print(f"โŒ {e}") print("๐Ÿ’ก Suggestions:") print(" 1. Wait a moment and try again (another instance might be shutting down)") print(" 2. Manually specify a different port:") print(" uvicorn app:app --host 0.0.0.0 --port 8001") print(" 3. Check for running processes: ps aux | grep python") except KeyboardInterrupt: print("\n๐Ÿ›‘ Server stopped by user") except Exception as e: print(f"โŒ Failed to start server: {e}") import traceback traceback.print_exc()