import spaces
import gradio as gr
import numpy as np
import random
import torch
from diffusers import AuraFlowPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the AuraFlow v0.3 pipeline
pipe = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3",
torch_dtype=torch.float16
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator
).images[0]
return image, seed
with gr.Blocks(theme="bethecloud/storj_theme") as demo:
gr.HTML(
"""
AuraFlow v0.3
"""
)
gr.HTML(
"""
"""
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt")
negative_prompt = gr.Text(label="Negative prompt", placeholder="Enter a negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
run_button = gr.Button("Generate")
with gr.Column(scale=1):
result = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed used")
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed_output]
)
gr.Examples(
examples=[
"A photo of a lavender cat",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
],
inputs=prompt,
)
demo.queue().launch(server_name="0.0.0.0", share=False)