Spaces:
Sleeping
Sleeping
Mejiro J
commited on
Commit
·
6992dff
1
Parent(s):
daa8f0b
fuck you guys for making audo so difficult
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- Reference_Voice/HonkaiSR/Kafka/audio.mp3 +3 -0
- Reference_Voice/text.json +5 -0
- app.py +170 -0
- requirements.txt +2 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Reference_Voice/HonkaiSR/Kafka/audio.mp3 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv
|
Reference_Voice/HonkaiSR/Kafka/audio.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48f2e0d62986fb70a8f5b70e492239bb130f7ab9538ad699e9619198bfca235b
|
3 |
+
size 267329
|
Reference_Voice/text.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"HonkaiSR": {
|
3 |
+
"Kafka" : "我尤其钟爱丝绒质地的大衣,脆弱而美丽,很难保养,稍有不慎便有损它的光泽。"
|
4 |
+
}
|
5 |
+
}
|
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import spaces
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import soundfile as sf
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
8 |
+
import tempfile
|
9 |
+
import json
|
10 |
+
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
####################
|
14 |
+
# 全局加载模型
|
15 |
+
####################
|
16 |
+
llasa_3b = "HKUSTAudio/Llasa-1B-multi-speakers-genshin-zh-en-ja-ko"
|
17 |
+
print("Loading tokenizer & model ...")
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
|
20 |
+
model.eval().to(device)
|
21 |
+
|
22 |
+
print("Loading XCodec2Model ...")
|
23 |
+
codec_model_path = "HKUSTAudio/xcodec2"
|
24 |
+
Codec_model = XCodec2Model.from_pretrained(codec_model_path)
|
25 |
+
Codec_model.eval().to(device)
|
26 |
+
|
27 |
+
print("Models loaded.")
|
28 |
+
|
29 |
+
prompt_text_dict = json.load(open("Reference_Voice/text.json", "r", encoding="utf-8"))
|
30 |
+
|
31 |
+
####################
|
32 |
+
# 推理用函数
|
33 |
+
####################
|
34 |
+
def extract_speech_ids(speech_tokens_str):
|
35 |
+
"""
|
36 |
+
将类似 <|s_23456|> 还原为 int 23456
|
37 |
+
"""
|
38 |
+
speech_ids = []
|
39 |
+
for token_str in speech_tokens_str:
|
40 |
+
if token_str.startswith("<|s_") and token_str.endswith("|>"):
|
41 |
+
num_str = token_str[4:-2]
|
42 |
+
num = int(num_str)
|
43 |
+
speech_ids.append(num)
|
44 |
+
else:
|
45 |
+
print(f"Unexpected token: {token_str}")
|
46 |
+
return speech_ids
|
47 |
+
|
48 |
+
def ids_to_speech_tokens(speech_ids):
|
49 |
+
|
50 |
+
speech_tokens_str = []
|
51 |
+
for speech_id in speech_ids:
|
52 |
+
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
53 |
+
return speech_tokens_str
|
54 |
+
|
55 |
+
@spaces.GPU
|
56 |
+
def text2speech(target_text, game, speaker):
|
57 |
+
"""
|
58 |
+
将文本转为语音波形,并返回音频文件路径
|
59 |
+
"""
|
60 |
+
|
61 |
+
prompt_wav, sr = sf.read(f"Reference_Voice/{game}/{speaker}/audio.mp3")
|
62 |
+
|
63 |
+
prompt_text = prompt_text_dict[game][speaker]
|
64 |
+
|
65 |
+
input_text = prompt_text + " " + target_text
|
66 |
+
# read text file in the same directory with name text
|
67 |
+
|
68 |
+
|
69 |
+
with torch.no_grad():
|
70 |
+
|
71 |
+
# Encode the prompt wav
|
72 |
+
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
|
73 |
+
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
|
74 |
+
|
75 |
+
vq_code_prompt = vq_code_prompt[0,0,:]
|
76 |
+
# Convert int 12345 to token <|s_12345|>
|
77 |
+
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
|
78 |
+
|
79 |
+
# 在输入文本前后拼接提示token
|
80 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
81 |
+
|
82 |
+
# Tokenize the text and the speech prefix
|
83 |
+
chat = [
|
84 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
85 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
|
86 |
+
]
|
87 |
+
|
88 |
+
input_ids = tokenizer.apply_chat_template(
|
89 |
+
chat,
|
90 |
+
tokenize=True,
|
91 |
+
return_tensors='pt',
|
92 |
+
continue_final_message=True
|
93 |
+
)
|
94 |
+
input_ids = input_ids.to('cuda')
|
95 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
96 |
+
|
97 |
+
# Generate the speech autoregressively
|
98 |
+
outputs = model.generate(
|
99 |
+
input_ids,
|
100 |
+
max_length=2048, # We trained our model with a max length of 2048
|
101 |
+
eos_token_id= speech_end_id ,
|
102 |
+
do_sample=True,
|
103 |
+
top_p=1,
|
104 |
+
temperature=0.8,
|
105 |
+
)
|
106 |
+
# Extract the speech tokens
|
107 |
+
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
|
108 |
+
|
109 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
110 |
+
|
111 |
+
# Convert token <|s_23456|> to int 23456
|
112 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
113 |
+
|
114 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
115 |
+
|
116 |
+
# Decode the speech tokens to speech waveform
|
117 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
118 |
+
|
119 |
+
# 获取音频数据和采样率
|
120 |
+
audio = gen_wav[0, 0, :].cpu().numpy()
|
121 |
+
sample_rate = 16000
|
122 |
+
|
123 |
+
# 将音频保存到临时文件
|
124 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
125 |
+
sf.write(tmpfile.name, audio, sample_rate)
|
126 |
+
audio_path = tmpfile.name
|
127 |
+
|
128 |
+
return audio_path
|
129 |
+
|
130 |
+
####################
|
131 |
+
# Gradio 界面
|
132 |
+
####################
|
133 |
+
game_choices = [
|
134 |
+
"HonkaiSR",
|
135 |
+
"Zenless",
|
136 |
+
"Genshin"
|
137 |
+
]
|
138 |
+
|
139 |
+
speaker_game_dict = {
|
140 |
+
"HonkaiSR": [
|
141 |
+
"Kafka", "Firefly", "Silverwolf"
|
142 |
+
],
|
143 |
+
"Zenless": [
|
144 |
+
"Yixuan", "Miyabi", "Jane"
|
145 |
+
],
|
146 |
+
"Genshin": [
|
147 |
+
"Mavuika", "Navia", "Kokomi", "Furina", "Yoimiya"
|
148 |
+
]
|
149 |
+
}
|
150 |
+
#["puck", "kore"]
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
with gr.Blocks() as demo:
|
154 |
+
gr.Markdown("## Text to Speech Generation")
|
155 |
+
with gr.Row():
|
156 |
+
game = gr.Dropdown(label="Game", choices=game_choices, value="HonkaiSR")
|
157 |
+
speaker = gr.Dropdown(label="Speaker", choices=speaker_game_dict[game.value], value="Kafka")
|
158 |
+
|
159 |
+
target_text = gr.Textbox(label="Target Text", placeholder="Enter the text you want to convert to speech.")
|
160 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
161 |
+
|
162 |
+
def update_speakers(game):
|
163 |
+
return speaker_game_dict[game]
|
164 |
+
|
165 |
+
game.change(update_speakers, inputs=game, outputs=speaker)
|
166 |
+
|
167 |
+
text2speech_button = gr.Button("Generate Speech")
|
168 |
+
text2speech_button.click(text2speech, inputs=[target_text, game, speaker], outputs=output_audio)
|
169 |
+
|
170 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
xcodec2==0.1.3
|
2 |
+
soundfile
|