Spaces:
Runtime error
Runtime error
| # Solving for residual std scaling issue | |
| import os | |
| import math | |
| import time | |
| from dataclasses import dataclass | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from tqdm import tqdm # Import tqdm for progress bar | |
| import torch.quantization # Import quantization module | |
| import torch.nn.utils.prune as prune | |
| import tiktoken | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| # key, query, value projections for all heads, but in a batch | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
| # output projection | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
| self.c_proj.NANGPT_SCALE_INIT = 1 | |
| # regularization | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
| # calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
| # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs | |
| # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer | |
| qkv = self.c_attn(x) | |
| q, k, v = qkv.split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
| att = F.softmax(att, dim=-1) | |
| y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
| # output projection | |
| y = self.c_proj(y) | |
| return y | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
| self.gelu = nn.GELU(approximate='tanh') | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
| self.c_proj.NANOGPT_SCALE_INIT = 1 | |
| def forward(self, x): | |
| x = self.c_fc(x) | |
| x = self.gelu(x) | |
| x = self.c_proj(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class GPTConfig: | |
| block_size: int = 1024 # max sequence length | |
| vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token | |
| n_layer: int = 12 # number of layers | |
| n_head: int = 12 # number of heads | |
| n_embd: int = 768 # embedding dimension | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe = nn.Embedding(config.block_size, config.n_embd), | |
| h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f = nn.LayerNorm(config.n_embd), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| # weight sharing | |
| self.transformer.wte.weight = self.lm_head.weight | |
| # weight initialization | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| std = 0.02 | |
| if hasattr(module, 'NANGPT_SCALE_INIT'): | |
| std *= (2 * self.config.n_layer) ** -0.5 | |
| torch.nn.init.normal_(module.weight, mean = 0.0, std = std) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) | |
| def print_num_parameters(self): | |
| num_params = sum(p.numel() for p in self.parameters()) | |
| print(f"Number of model parameters: {num_params}") | |
| def forward(self, idx, targets=None): | |
| # idx is of shape (B, T) | |
| B, T = idx.size() | |
| assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
| # forward the token and posisition embeddings | |
| pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) | |
| pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) | |
| tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) | |
| x = tok_emb + pos_emb | |
| # forward the blocks of the transformer | |
| for block in self.transformer.h: | |
| x = block(x) | |
| # forward the final layernorm and the classifier | |
| x = self.transformer.ln_f(x) | |
| logits = self.lm_head(x) # (B, T, vocab_size) | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
| return logits, loss | |
| def from_pretrained(cls, model_type): | |
| """Loads pretrained GPT-2 model weights from huggingface""" | |
| assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} | |
| from transformers import GPT2LMHeadModel | |
| print("loading weights from pretrained gpt: %s" % model_type) | |
| # n_layer, n_head and n_embd are determined from model_type | |
| config_args = { | |
| 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params | |
| 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params | |
| 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params | |
| 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params | |
| }[model_type] | |
| config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints | |
| config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints | |
| # create a from-scratch initialized minGPT model | |
| config = GPTConfig(**config_args) | |
| model = GPT(config) | |
| sd = model.state_dict() | |
| sd_keys = sd.keys() | |
| sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param | |
| # init a huggingface/transformers model | |
| model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
| sd_hf = model_hf.state_dict() | |
| # copy while ensuring all of the parameters are aligned and match in names and shapes | |
| sd_keys_hf = sd_hf.keys() | |
| sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer | |
| sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) | |
| transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
| # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear | |
| # this means that we have to transpose these weights when we import them | |
| assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | |
| for k in sd_keys_hf: | |
| if any(k.endswith(w) for w in transposed): | |
| # special treatment for the Conv1D weights we need to transpose | |
| assert sd_hf[k].shape[::-1] == sd[k].shape | |
| with torch.no_grad(): | |
| sd[k].copy_(sd_hf[k].t()) | |
| else: | |
| # vanilla copy over the other parameters | |
| assert sd_hf[k].shape == sd[k].shape | |
| with torch.no_grad(): | |
| sd[k].copy_(sd_hf[k]) | |
| return model | |
| device = 'cpu' | |
| if torch.cuda.is_available(): | |
| device = 'cuda' | |
| elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
| device = "mps" | |
| print(f"using device: {device}") | |
| # SEED | |
| torch.manual_seed(1337) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(1337) | |
| class DataLoaderLite: | |
| def __init__(self, B, T): | |
| self.B = B | |
| self.T = T | |
| # at init load tokens from disk and store them in memory | |
| with open('input.txt', 'r') as f: | |
| text = f.read() | |
| enc = tiktoken.get_encoding('gpt2') | |
| tokens = enc.encode(text) | |
| self.tokens = torch.tensor(tokens, device=device) # Move tokens to the correct device | |
| print(f'loaded {len(self.tokens)} tokens') | |
| print(f'1 epoch = {len(self.tokens)} batches') | |
| # state | |
| self.current_position = 0 | |
| def next_batch(self): | |
| B, T = self.B, self.T | |
| buf = self.tokens[self.current_position: self.current_position + B * T + 1] | |
| x = (buf[:-1]).view(B, T) # inputs | |
| y = (buf[1:]).view(B, T) # targets | |
| # advance the position in the tensor | |
| self.current_position += B*T | |
| # if loading the next batch would be out of bounds, reset | |
| if self.current_position + (B * T + 1) > len(self.tokens): | |
| self.current_position = 0 | |
| return x, y | |
| import os | |
| import time | |
| import torch | |
| # Initialize the model and data loader | |
| config = GPTConfig() | |
| model = GPT(config).to(device) # Move model to the correct device | |
| # Print the model architecture and number of parameters | |
| print(model) | |
| model.print_num_parameters() | |
| train_loader = DataLoaderLite(B=4, T=1024) | |
| # Define the optimizer | |
| optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4) | |
| # Function to load the most recent checkpoint | |
| def load_latest_checkpoint(model): | |
| checkpoint_file = 'checkpoint.pt' | |
| if not os.path.exists(checkpoint_file): | |
| return 0 # No checkpoint found, start from epoch 0 | |
| print(f'Loading checkpoint from {checkpoint_file}') | |
| checkpoint = torch.load(checkpoint_file, map_location=device) # Load checkpoint to the correct device | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| return checkpoint['epoch'] | |
| # Load the latest checkpoint if available | |
| start_epoch = load_latest_checkpoint(model) | |
| # Training loop | |
| num_epochs = 100 | |
| # Start time tracking | |
| start_time = time.time() | |
| for epoch in range(start_epoch, num_epochs): # Start from the loaded epoch | |
| epoch_loss = 0.0 # Initialize epoch loss | |
| num_steps = 0 # Initialize step counter for the epoch | |
| last_loss = None # Variable to store the last loss | |
| # Calculate total steps for the progress bar | |
| total_steps = len(train_loader.tokens) // (train_loader.B * train_loader.T) | |
| # Use tqdm to create a progress bar | |
| with tqdm(total=total_steps, desc=f'Epoch {epoch + 1}/{num_epochs}') as pbar: | |
| for step in range(total_steps): # Iterate over the number of steps | |
| x, y = train_loader.next_batch() | |
| x, y = x.to(device), y.to(device) | |
| optimizer.zero_grad() | |
| logits, loss = model(x, y) | |
| loss.backward() | |
| optimizer.step() | |
| epoch_loss += loss.item() # Accumulate loss | |
| num_steps += 1 # Increment step counter | |
| last_loss = loss.item() # Store the last loss | |
| pbar.update(1) # Update progress bar | |
| # Check if the loss is below the threshold | |
| if last_loss < 0.099999: | |
| print(f'Loss below threshold: {last_loss:.6f}') # Print loss before breaking | |
| break # Exit the loop if the loss condition is met | |
| # Print the loss at the end of the epoch | |
| print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {last_loss:.6f}') | |
| # Check if the loss condition was met to break out of the epoch loop | |
| if last_loss < 0.099999: | |
| print(f'Early stopping at epoch {epoch + 1} due to loss condition met.') | |
| break # Exit the epoch loop if the loss condition is met | |
| # Checkpointing: Save the model and the current epoch after each epoch | |
| checkpoint_path = 'checkpoint.pt' # Save to a single checkpoint file | |
| torch.save({ | |
| 'epoch': epoch + 1, # Save the current epoch number | |
| 'model_state_dict': model.state_dict(), # Save the model state | |
| }, checkpoint_path) | |
| # End time tracking | |
| end_time = time.time() | |
| training_duration = end_time - start_time | |
| # Convert training duration to minutes and seconds | |
| minutes = int(training_duration // 60) | |
| seconds = int(training_duration % 60) | |
| # Print the total training time in minute:second format | |
| print(f'Total training time: {minutes} minutes and {seconds} seconds') | |
| # After training your model, apply quantization and save it with compression | |
| def save_model_with_quantization(model, file_path): | |
| # Switch model to evaluation mode | |
| model.eval() | |
| # Apply dynamic quantization | |
| quantized_model = torch.quantization.quantize_dynamic( | |
| model, # the model to be quantized | |
| {nn.Linear}, # layers to quantize | |
| dtype=torch.qint8 # quantization type | |
| ) | |
| # Save the quantized model with compression | |
| torch.save(quantized_model.state_dict(), file_path, _use_new_zipfile_serialization=True) | |
| print(f'Model saved to {file_path} with quantization and compression.') | |
| # Call this function after training your model | |
| save_model_with_quantization(model, 'trained_model_quantized.pt') |