Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,114 @@
|
|
| 1 |
-
"""
|
| 2 |
import os
|
| 3 |
-
import inspect
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
| 6 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from agent.agent import chat_with_agent
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# (Keep Constants as is)
|
| 12 |
# --- Constants ---
|
| 13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 14 |
|
| 15 |
-
# ---
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
class BasicAgent:
|
| 20 |
def __call__(self, question: str) -> dict:
|
| 21 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
@@ -28,34 +121,34 @@ class BasicAgent:
|
|
| 28 |
"reasoning_trace": answer # Using the full response as reasoning trace
|
| 29 |
}
|
| 30 |
|
| 31 |
-
|
| 32 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 33 |
"""
|
| 34 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 35 |
and displays the results.
|
| 36 |
"""
|
| 37 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 38 |
-
space_id = os.getenv("SPACE_ID")
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
else:
|
| 44 |
-
print("
|
| 45 |
-
return "Please
|
| 46 |
|
| 47 |
api_url = DEFAULT_API_URL
|
| 48 |
questions_url = f"{api_url}/questions"
|
| 49 |
submit_url = f"{api_url}/submit"
|
| 50 |
|
| 51 |
-
# 1. Instantiate Agent
|
| 52 |
try:
|
| 53 |
agent = BasicAgent()
|
| 54 |
except Exception as e:
|
| 55 |
print(f"Error instantiating agent: {e}")
|
| 56 |
return f"Error initializing agent: {e}", None
|
| 57 |
-
|
| 58 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 59 |
print(agent_code)
|
| 60 |
|
| 61 |
# 2. Fetch Questions
|
|
@@ -86,6 +179,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 86 |
for item in questions_data:
|
| 87 |
task_id = item.get("task_id")
|
| 88 |
question_text = item.get("question")
|
|
|
|
|
|
|
| 89 |
if not task_id or question_text is None:
|
| 90 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 91 |
continue
|
|
@@ -97,6 +192,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 97 |
model_answer = agent_response.get("model_answer", "")
|
| 98 |
reasoning_trace = agent_response.get("reasoning_trace", "")
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
# Create JSON-line format entry
|
| 101 |
json_line_entry = {
|
| 102 |
"task_id": task_id,
|
|
@@ -113,7 +213,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 113 |
results_log.append({
|
| 114 |
"Task ID": task_id,
|
| 115 |
"Question": display_question,
|
| 116 |
-
"Model Answer": display_answer
|
|
|
|
| 117 |
})
|
| 118 |
|
| 119 |
except Exception as e:
|
|
@@ -127,7 +228,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 127 |
results_log.append({
|
| 128 |
"Task ID": task_id,
|
| 129 |
"Question": question_text[:200] + "..." if question_text and len(question_text) > 200 else question_text,
|
| 130 |
-
"Model Answer": f"AGENT ERROR: {e}"
|
|
|
|
| 131 |
})
|
| 132 |
|
| 133 |
if not answers_payload:
|
|
@@ -182,58 +284,48 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 182 |
results_df = pd.DataFrame(results_log)
|
| 183 |
return status_message, results_df
|
| 184 |
|
| 185 |
-
|
| 186 |
-
# --- Build Gradio Interface using Blocks ---
|
| 187 |
with gr.Blocks() as demo:
|
| 188 |
-
gr.Markdown("#
|
| 189 |
gr.Markdown(
|
| 190 |
"""
|
| 191 |
**Instructions:**
|
| 192 |
-
1.
|
| 193 |
-
2.
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
**Disclaimers:**
|
| 197 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 198 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 199 |
"""
|
| 200 |
)
|
| 201 |
|
| 202 |
-
gr.
|
| 203 |
-
|
| 204 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 205 |
-
|
| 206 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 207 |
-
# Removed max_rows=10 from DataFrame constructor
|
| 208 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 209 |
|
| 210 |
run_button.click(
|
| 211 |
fn=run_and_submit_all,
|
|
|
|
| 212 |
outputs=[status_output, results_table]
|
| 213 |
)
|
| 214 |
|
| 215 |
if __name__ == "__main__":
|
| 216 |
-
print("\n" + "-"
|
| 217 |
-
|
| 218 |
-
# Print helpful startup info
|
| 219 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 220 |
space_id_startup = os.getenv("SPACE_ID")
|
| 221 |
|
| 222 |
if space_host_startup:
|
| 223 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 224 |
-
print(f" Runtime URL: https://{space_host_startup}.hf.space")
|
| 225 |
else:
|
| 226 |
-
print("ℹ️ SPACE_HOST not found
|
| 227 |
|
| 228 |
if space_id_startup:
|
| 229 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 230 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 231 |
-
print(f" Repo Tree: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 232 |
else:
|
| 233 |
-
print("ℹ️ SPACE_ID not found. Repo URL cannot be determined.")
|
| 234 |
-
|
| 235 |
-
print("-" * 70)
|
| 236 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
| 1 |
+
""" Agent Evaluation Runner"""
|
| 2 |
import os
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
| 5 |
import pandas as pd
|
| 6 |
+
import json
|
| 7 |
+
import re
|
| 8 |
+
import string
|
| 9 |
+
import warnings
|
| 10 |
+
import numpy as np
|
| 11 |
from agent.agent import chat_with_agent
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
# --- Constants ---
|
| 14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 15 |
|
| 16 |
+
# --- Scoring Functions ---
|
| 17 |
+
def normalize_number_str(number_str: str) -> float:
|
| 18 |
+
# we replace these common units and commas to allow
|
| 19 |
+
# conversion to float
|
| 20 |
+
for char in ["$", "%", ","]:
|
| 21 |
+
number_str = number_str.replace(char, "")
|
| 22 |
+
try:
|
| 23 |
+
return float(number_str)
|
| 24 |
+
except ValueError:
|
| 25 |
+
print(f"String {number_str} cannot be normalized to number str.")
|
| 26 |
+
return float("inf")
|
| 27 |
+
|
| 28 |
+
def split_string(
|
| 29 |
+
s: str,
|
| 30 |
+
char_list: list[str] = [",", ";"],
|
| 31 |
+
) -> list[str]:
|
| 32 |
+
pattern = f"[{''.join(char_list)}]"
|
| 33 |
+
return re.split(pattern, s)
|
| 34 |
+
|
| 35 |
+
def normalize_str(input_str, remove_punct=True) -> str:
|
| 36 |
+
"""
|
| 37 |
+
Normalize a string by:
|
| 38 |
+
- Removing all white spaces
|
| 39 |
+
- Optionally removing punctuation (if remove_punct is True)
|
| 40 |
+
- Converting to lowercase
|
| 41 |
+
Parameters:
|
| 42 |
+
- input_str: str, the string to normalize
|
| 43 |
+
- remove_punct: bool, whether to remove punctuation (default: True)
|
| 44 |
+
Returns:
|
| 45 |
+
- str, the normalized string
|
| 46 |
+
"""
|
| 47 |
+
# Remove all white spaces. Required e.g for seagull vs. sea gull
|
| 48 |
+
no_spaces = re.sub(r"\s", "", input_str)
|
| 49 |
+
|
| 50 |
+
# Remove punctuation, if specified.
|
| 51 |
+
if remove_punct:
|
| 52 |
+
translator = str.maketrans("", "", string.punctuation)
|
| 53 |
+
return no_spaces.lower().translate(translator)
|
| 54 |
+
else:
|
| 55 |
+
return no_spaces.lower()
|
| 56 |
+
|
| 57 |
+
def question_scorer(
|
| 58 |
+
model_answer: str,
|
| 59 |
+
ground_truth: str,
|
| 60 |
+
) -> bool:
|
| 61 |
+
def is_float(element: any) -> bool:
|
| 62 |
+
try:
|
| 63 |
+
float(element)
|
| 64 |
+
return True
|
| 65 |
+
except ValueError:
|
| 66 |
+
return False
|
| 67 |
+
|
| 68 |
+
if model_answer is None:
|
| 69 |
+
model_answer = "None"
|
| 70 |
+
|
| 71 |
+
# if gt is a number
|
| 72 |
+
if is_float(ground_truth):
|
| 73 |
+
print(f"Evaluating {model_answer} as a number.")
|
| 74 |
+
normalized_answer = normalize_number_str(model_answer)
|
| 75 |
+
return normalized_answer == float(ground_truth)
|
| 76 |
+
|
| 77 |
+
# if gt is a list
|
| 78 |
+
elif any(char in ground_truth for char in [",", ";"]):
|
| 79 |
+
print(f"Evaluating {model_answer} as a comma separated list.")
|
| 80 |
+
# question with the fish: normalization removes punct
|
| 81 |
|
| 82 |
+
gt_elems = split_string(ground_truth)
|
| 83 |
+
ma_elems = split_string(model_answer)
|
| 84 |
|
| 85 |
+
# check length is the same
|
| 86 |
+
if len(gt_elems) != len(ma_elems):
|
| 87 |
+
warnings.warn(
|
| 88 |
+
"Answer lists have different lengths, returning False.", UserWarning
|
| 89 |
+
)
|
| 90 |
+
return False
|
| 91 |
+
|
| 92 |
+
# compare each element as float or str
|
| 93 |
+
comparisons = []
|
| 94 |
+
for ma_elem, gt_elem in zip(ma_elems, gt_elems):
|
| 95 |
+
if is_float(gt_elem):
|
| 96 |
+
normalized_ma_elem = normalize_number_str(ma_elem)
|
| 97 |
+
comparisons.append(normalized_ma_elem == float(gt_elem))
|
| 98 |
+
else:
|
| 99 |
+
# we do not remove punct since comparisons can include punct
|
| 100 |
+
comparisons.append(
|
| 101 |
+
normalize_str(ma_elem, remove_punct=False)
|
| 102 |
+
== normalize_str(gt_elem, remove_punct=False)
|
| 103 |
+
)
|
| 104 |
+
return all(comparisons)
|
| 105 |
+
|
| 106 |
+
# if gt is a str
|
| 107 |
+
else:
|
| 108 |
+
print(f"Evaluating {model_answer} as a string.")
|
| 109 |
+
return normalize_str(model_answer) == normalize_str(ground_truth)
|
| 110 |
+
|
| 111 |
+
# --- Agent Definition ---
|
| 112 |
class BasicAgent:
|
| 113 |
def __call__(self, question: str) -> dict:
|
| 114 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
| 121 |
"reasoning_trace": answer # Using the full response as reasoning trace
|
| 122 |
}
|
| 123 |
|
| 124 |
+
def run_and_submit_all(username_input=""):
|
|
|
|
| 125 |
"""
|
| 126 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 127 |
and displays the results.
|
| 128 |
"""
|
| 129 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 130 |
+
space_id = os.getenv("SPACE_ID")
|
| 131 |
|
| 132 |
+
# Get username from input
|
| 133 |
+
if username_input:
|
| 134 |
+
username = username_input.strip()
|
| 135 |
+
print(f"Using provided username: {username}")
|
| 136 |
else:
|
| 137 |
+
print("No username provided.")
|
| 138 |
+
return "Please provide a username.", None
|
| 139 |
|
| 140 |
api_url = DEFAULT_API_URL
|
| 141 |
questions_url = f"{api_url}/questions"
|
| 142 |
submit_url = f"{api_url}/submit"
|
| 143 |
|
| 144 |
+
# 1. Instantiate Agent
|
| 145 |
try:
|
| 146 |
agent = BasicAgent()
|
| 147 |
except Exception as e:
|
| 148 |
print(f"Error instantiating agent: {e}")
|
| 149 |
return f"Error initializing agent: {e}", None
|
| 150 |
+
|
| 151 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/your-space-id/tree/main"
|
| 152 |
print(agent_code)
|
| 153 |
|
| 154 |
# 2. Fetch Questions
|
|
|
|
| 179 |
for item in questions_data:
|
| 180 |
task_id = item.get("task_id")
|
| 181 |
question_text = item.get("question")
|
| 182 |
+
ground_truth = item.get("ground_truth", "") # Get ground truth if available
|
| 183 |
+
|
| 184 |
if not task_id or question_text is None:
|
| 185 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 186 |
continue
|
|
|
|
| 192 |
model_answer = agent_response.get("model_answer", "")
|
| 193 |
reasoning_trace = agent_response.get("reasoning_trace", "")
|
| 194 |
|
| 195 |
+
# Score the answer if ground truth is available
|
| 196 |
+
score = None
|
| 197 |
+
if ground_truth:
|
| 198 |
+
score = question_scorer(model_answer, ground_truth)
|
| 199 |
+
|
| 200 |
# Create JSON-line format entry
|
| 201 |
json_line_entry = {
|
| 202 |
"task_id": task_id,
|
|
|
|
| 213 |
results_log.append({
|
| 214 |
"Task ID": task_id,
|
| 215 |
"Question": display_question,
|
| 216 |
+
"Model Answer": display_answer,
|
| 217 |
+
"Score": "✓" if score else "✗" if score is False else "N/A"
|
| 218 |
})
|
| 219 |
|
| 220 |
except Exception as e:
|
|
|
|
| 228 |
results_log.append({
|
| 229 |
"Task ID": task_id,
|
| 230 |
"Question": question_text[:200] + "..." if question_text and len(question_text) > 200 else question_text,
|
| 231 |
+
"Model Answer": f"AGENT ERROR: {e}",
|
| 232 |
+
"Score": "ERROR"
|
| 233 |
})
|
| 234 |
|
| 235 |
if not answers_payload:
|
|
|
|
| 284 |
results_df = pd.DataFrame(results_log)
|
| 285 |
return status_message, results_df
|
| 286 |
|
| 287 |
+
# --- Build Gradio Interface ---
|
|
|
|
| 288 |
with gr.Blocks() as demo:
|
| 289 |
+
gr.Markdown("# Agent Evaluation Runner")
|
| 290 |
gr.Markdown(
|
| 291 |
"""
|
| 292 |
**Instructions:**
|
| 293 |
+
1. Enter your Hugging Face username in the text box below.
|
| 294 |
+
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 295 |
+
|
| 296 |
+
**Note:** This will take some time as the agent processes all questions.
|
|
|
|
|
|
|
|
|
|
| 297 |
"""
|
| 298 |
)
|
| 299 |
|
| 300 |
+
username_input = gr.Textbox(label="Enter your Hugging Face username", placeholder="your_username")
|
|
|
|
| 301 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
| 302 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
| 303 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 304 |
|
| 305 |
run_button.click(
|
| 306 |
fn=run_and_submit_all,
|
| 307 |
+
inputs=[username_input],
|
| 308 |
outputs=[status_output, results_table]
|
| 309 |
)
|
| 310 |
|
| 311 |
if __name__ == "__main__":
|
| 312 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
|
|
|
|
| 313 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 314 |
space_id_startup = os.getenv("SPACE_ID")
|
| 315 |
|
| 316 |
if space_host_startup:
|
| 317 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 318 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 319 |
else:
|
| 320 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 321 |
|
| 322 |
if space_id_startup:
|
| 323 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 324 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 325 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 326 |
else:
|
| 327 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 330 |
+
print("Launching Gradio Interface for Agent Evaluation...")
|
| 331 |
+
demo.launch(debug=True, share=True)
|