Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,147 +1,322 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
# --- Constants ---
|
| 7 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 8 |
|
| 9 |
-
# ---
|
| 10 |
-
|
|
|
|
| 11 |
def __init__(self):
|
| 12 |
-
print("
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
try:
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
response.raise_for_status()
|
| 42 |
-
questions_data = response.json()
|
| 43 |
-
|
| 44 |
-
if not questions_data:
|
| 45 |
-
return "❌ No questions received from API.", None
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
question_text = item.get("question")
|
| 60 |
-
if not task_id or question_text is None:
|
| 61 |
-
continue
|
| 62 |
try:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
except Exception as e:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
"Question": question_text,
|
| 77 |
-
"Submitted Answer": f"ERROR: {e}"
|
| 78 |
-
})
|
| 79 |
-
|
| 80 |
-
if not answers_payload:
|
| 81 |
-
return "❌ Agent did not answer any questions.", pd.DataFrame(results_log)
|
| 82 |
-
|
| 83 |
-
submission_data = {
|
| 84 |
-
"username": username.strip(),
|
| 85 |
-
"agent_code": agent_code,
|
| 86 |
-
"answers": answers_payload
|
| 87 |
-
}
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
1. Log in with your Hugging Face account below.
|
| 118 |
-
2. Click the button to run your agent on 20 questions and auto-submit the results.
|
| 119 |
-
3. Score and output will be displayed.
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
gr.
|
| 125 |
-
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
run_button.click(
|
| 140 |
-
fn=
|
|
|
|
| 141 |
outputs=[status_output, results_table]
|
| 142 |
)
|
| 143 |
|
| 144 |
-
# --- Run the Gradio App ---
|
| 145 |
if __name__ == "__main__":
|
| 146 |
-
print("
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
+
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
import json
|
| 7 |
+
from agent.agent import chat_with_agent
|
| 8 |
|
| 9 |
+
# (Keep Constants as is)
|
| 10 |
# --- Constants ---
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
|
| 13 |
+
# --- Agent Definition ---
|
| 14 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 15 |
+
class AdvancedAgent:
|
| 16 |
def __init__(self):
|
| 17 |
+
print("AdvancedAgent initialized with tools and capabilities.")
|
| 18 |
+
|
| 19 |
+
def __call__(self, question: str) -> dict:
|
| 20 |
+
"""
|
| 21 |
+
Process a question and return a structured response with answer and reasoning.
|
| 22 |
+
Returns: {"model_answer": "answer", "reasoning_trace": "reasoning"}
|
| 23 |
+
"""
|
| 24 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
# Get response from the agent
|
| 28 |
+
response = chat_with_agent(question)
|
| 29 |
+
|
| 30 |
+
# Extract the final answer from the response
|
| 31 |
+
# The agent is configured to end with "FINAL ANSWER: [answer]"
|
| 32 |
+
if "FINAL ANSWER:" in response:
|
| 33 |
+
# Extract everything after "FINAL ANSWER:"
|
| 34 |
+
final_answer = response.split("FINAL ANSWER:")[-1].strip()
|
| 35 |
+
# Remove any extra formatting or newlines
|
| 36 |
+
final_answer = final_answer.replace('\n', ' ').strip()
|
| 37 |
+
else:
|
| 38 |
+
# If no FINAL ANSWER format, use the whole response
|
| 39 |
+
final_answer = response.strip()
|
| 40 |
+
|
| 41 |
+
# Create the reasoning trace (the full response without the final answer)
|
| 42 |
+
reasoning_trace = response.strip()
|
| 43 |
+
|
| 44 |
+
return {
|
| 45 |
+
"model_answer": final_answer,
|
| 46 |
+
"reasoning_trace": reasoning_trace
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error in agent processing: {e}")
|
| 51 |
+
return {
|
| 52 |
+
"model_answer": f"Error: {str(e)}",
|
| 53 |
+
"reasoning_trace": f"Agent encountered an error while processing the question: {str(e)}"
|
| 54 |
+
}
|
| 55 |
|
| 56 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 57 |
+
"""
|
| 58 |
+
Fetches all questions, runs the AdvancedAgent on them, submits all answers,
|
| 59 |
+
and displays the results.
|
| 60 |
+
"""
|
| 61 |
try:
|
| 62 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 63 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
if profile:
|
| 66 |
+
username= f"{profile.username}"
|
| 67 |
+
print(f"User logged in: {username}")
|
| 68 |
+
else:
|
| 69 |
+
print("User not logged in.")
|
| 70 |
+
return "Please Login to Hugging Face with the button.", None
|
| 71 |
|
| 72 |
+
api_url = DEFAULT_API_URL
|
| 73 |
+
questions_url = f"{api_url}/questions"
|
| 74 |
+
submit_url = f"{api_url}/submit"
|
| 75 |
|
| 76 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 77 |
+
try:
|
| 78 |
+
agent = AdvancedAgent()
|
| 79 |
+
except Exception as e:
|
| 80 |
+
print(f"Error instantiating agent: {e}")
|
| 81 |
+
return f"Error initializing agent: {e}", None
|
| 82 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 83 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/your-space-id/tree/main"
|
| 84 |
+
print(agent_code)
|
| 85 |
|
| 86 |
+
# 2. Fetch Questions
|
| 87 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
| 88 |
try:
|
| 89 |
+
response = requests.get(questions_url, timeout=15)
|
| 90 |
+
response.raise_for_status()
|
| 91 |
+
questions_data = response.json()
|
| 92 |
+
if not questions_data:
|
| 93 |
+
print("Fetched questions list is empty.")
|
| 94 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 95 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 96 |
+
except requests.exceptions.RequestException as e:
|
| 97 |
+
print(f"Error fetching questions: {e}")
|
| 98 |
+
return f"Error fetching questions: {e}", None
|
| 99 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 100 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 101 |
+
print(f"Response text: {response.text[:500]}")
|
| 102 |
+
return f"Error decoding server response for questions: {e}", None
|
| 103 |
except Exception as e:
|
| 104 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 105 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# 3. Run your Agent
|
| 108 |
+
results_log = []
|
| 109 |
+
answers_payload = []
|
| 110 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 111 |
+
for item in questions_data:
|
| 112 |
+
task_id = item.get("task_id")
|
| 113 |
+
question_text = item.get("question")
|
| 114 |
+
if not task_id or question_text is None:
|
| 115 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 116 |
+
continue
|
| 117 |
+
try:
|
| 118 |
+
# Get structured response from agent
|
| 119 |
+
agent_response = agent(question_text)
|
| 120 |
+
|
| 121 |
+
# Extract model_answer and reasoning_trace
|
| 122 |
+
model_answer = agent_response.get("model_answer", "")
|
| 123 |
+
reasoning_trace = agent_response.get("reasoning_trace", "")
|
| 124 |
+
|
| 125 |
+
# Ensure the answer is a string and not too long
|
| 126 |
+
if not isinstance(model_answer, str):
|
| 127 |
+
model_answer = str(model_answer)
|
| 128 |
+
if len(model_answer) > 10000: # Limit answer length
|
| 129 |
+
model_answer = model_answer[:10000] + "..."
|
| 130 |
+
|
| 131 |
+
# Ensure reasoning_trace is a string and not too long
|
| 132 |
+
if not isinstance(reasoning_trace, str):
|
| 133 |
+
reasoning_trace = str(reasoning_trace)
|
| 134 |
+
if len(reasoning_trace) > 50000: # Limit reasoning length
|
| 135 |
+
reasoning_trace = reasoning_trace[:50000] + "..."
|
| 136 |
+
|
| 137 |
+
# Create JSON-line format entry
|
| 138 |
+
json_line_entry = {
|
| 139 |
+
"task_id": task_id,
|
| 140 |
+
"model_answer": model_answer,
|
| 141 |
+
"reasoning_trace": reasoning_trace
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
answers_payload.append(json_line_entry)
|
| 145 |
+
|
| 146 |
+
# For display in the table, show truncated versions
|
| 147 |
+
display_question = question_text[:200] + "..." if len(question_text) > 200 else question_text
|
| 148 |
+
display_answer = model_answer[:200] + "..." if len(model_answer) > 200 else model_answer
|
| 149 |
+
display_reasoning = reasoning_trace[:200] + "..." if len(reasoning_trace) > 200 else reasoning_trace
|
| 150 |
+
|
| 151 |
+
results_log.append({
|
| 152 |
+
"Task ID": task_id,
|
| 153 |
+
"Question": display_question,
|
| 154 |
+
"Model Answer": display_answer,
|
| 155 |
+
"Reasoning Trace": display_reasoning
|
| 156 |
+
})
|
| 157 |
+
|
| 158 |
+
except Exception as e:
|
| 159 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 160 |
+
error_response = {
|
| 161 |
+
"task_id": task_id,
|
| 162 |
+
"model_answer": f"AGENT ERROR: {e}",
|
| 163 |
+
"reasoning_trace": f"Agent encountered an error while processing the question: {str(e)}"
|
| 164 |
+
}
|
| 165 |
+
answers_payload.append(error_response)
|
| 166 |
+
results_log.append({
|
| 167 |
+
"Task ID": task_id,
|
| 168 |
+
"Question": question_text[:200] + "..." if question_text and len(question_text) > 200 else question_text,
|
| 169 |
+
"Model Answer": f"AGENT ERROR: {e}",
|
| 170 |
+
"Reasoning Trace": f"Error occurred during processing"
|
| 171 |
+
})
|
| 172 |
|
| 173 |
+
if not answers_payload:
|
| 174 |
+
print("Agent did not produce any answers to submit.")
|
| 175 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 176 |
|
| 177 |
+
# 4. Prepare Submission
|
| 178 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 179 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 180 |
+
print(status_update)
|
| 181 |
|
| 182 |
+
# 5. Submit
|
| 183 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 184 |
+
try:
|
| 185 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 186 |
+
response.raise_for_status()
|
| 187 |
+
result_data = response.json()
|
| 188 |
+
final_status = (
|
| 189 |
+
f"Submission Successful!\n"
|
| 190 |
+
f"User: {result_data.get('username')}\n"
|
| 191 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 192 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 193 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 194 |
+
)
|
| 195 |
+
print("Submission successful.")
|
| 196 |
+
results_df = pd.DataFrame(results_log)
|
| 197 |
+
return final_status, results_df
|
| 198 |
+
except requests.exceptions.HTTPError as e:
|
| 199 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 200 |
+
try:
|
| 201 |
+
error_json = e.response.json()
|
| 202 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 203 |
+
except requests.exceptions.JSONDecodeError:
|
| 204 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 205 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 206 |
+
print(status_message)
|
| 207 |
+
results_df = pd.DataFrame(results_log)
|
| 208 |
+
return status_message, results_df
|
| 209 |
+
except requests.exceptions.Timeout:
|
| 210 |
+
status_message = "Submission Failed: The request timed out."
|
| 211 |
+
print(status_message)
|
| 212 |
+
results_df = pd.DataFrame(results_log)
|
| 213 |
+
return status_message, results_df
|
| 214 |
+
except requests.exceptions.RequestException as e:
|
| 215 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 216 |
+
print(status_message)
|
| 217 |
+
results_df = pd.DataFrame(results_log)
|
| 218 |
+
return status_message, results_df
|
| 219 |
+
except Exception as e:
|
| 220 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 221 |
+
print(status_message)
|
| 222 |
+
results_df = pd.DataFrame(results_log)
|
| 223 |
+
return status_message, results_df
|
| 224 |
+
except Exception as e:
|
| 225 |
+
error_msg = f"Critical error in run_and_submit_all: {str(e)}"
|
| 226 |
+
print(error_msg)
|
| 227 |
+
return error_msg, None
|
| 228 |
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# --- Build Gradio Interface using Blocks ---
|
| 231 |
+
with gr.Blocks(
|
| 232 |
+
title="Advanced Agent Evaluation Runner",
|
| 233 |
+
theme=gr.themes.Soft(),
|
| 234 |
+
css="""
|
| 235 |
+
.gradio-container {
|
| 236 |
+
max-width: 1200px !important;
|
| 237 |
+
}
|
| 238 |
+
"""
|
| 239 |
+
) as demo:
|
| 240 |
+
gr.Markdown("# Advanced Agent Evaluation Runner")
|
| 241 |
+
gr.Markdown(
|
| 242 |
+
"""
|
| 243 |
+
**Instructions:**
|
| 244 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 245 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 246 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 247 |
+
---
|
| 248 |
+
**Disclaimers:**
|
| 249 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 250 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 251 |
+
"""
|
| 252 |
+
)
|
| 253 |
|
| 254 |
+
with gr.Row():
|
| 255 |
+
login_button = gr.LoginButton(label="Login to Hugging Face")
|
| 256 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
| 257 |
|
| 258 |
+
with gr.Row():
|
| 259 |
+
status_output = gr.Textbox(
|
| 260 |
+
label="Run Status / Submission Result",
|
| 261 |
+
lines=5,
|
| 262 |
+
interactive=False,
|
| 263 |
+
max_lines=10
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
with gr.Row():
|
| 267 |
+
results_table = gr.DataFrame(
|
| 268 |
+
label="Questions and Agent Answers",
|
| 269 |
+
wrap=True,
|
| 270 |
+
max_rows=50,
|
| 271 |
+
height=400
|
| 272 |
+
)
|
| 273 |
|
| 274 |
+
# Add error handling to the button click
|
| 275 |
+
def safe_run_and_submit(profile):
|
| 276 |
+
try:
|
| 277 |
+
return run_and_submit_all(profile)
|
| 278 |
+
except Exception as e:
|
| 279 |
+
error_msg = f"An error occurred: {str(e)}"
|
| 280 |
+
print(f"Error in safe_run_and_submit: {e}")
|
| 281 |
+
return error_msg, None
|
| 282 |
|
| 283 |
run_button.click(
|
| 284 |
+
fn=safe_run_and_submit,
|
| 285 |
+
inputs=[login_button],
|
| 286 |
outputs=[status_output, results_table]
|
| 287 |
)
|
| 288 |
|
|
|
|
| 289 |
if __name__ == "__main__":
|
| 290 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 291 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 292 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 293 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 294 |
+
|
| 295 |
+
if space_host_startup:
|
| 296 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 297 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 298 |
+
else:
|
| 299 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 300 |
+
|
| 301 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 302 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 303 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 304 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 305 |
+
else:
|
| 306 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 307 |
+
|
| 308 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 309 |
+
|
| 310 |
+
print("Launching Gradio Interface for Advanced Agent Evaluation...")
|
| 311 |
+
# Fixed launch configuration to prevent HTTP protocol errors
|
| 312 |
+
demo.launch(
|
| 313 |
+
debug=False, # Disable debug mode to prevent extra logging that can cause issues
|
| 314 |
+
share=False,
|
| 315 |
+
server_name="0.0.0.0",
|
| 316 |
+
server_port=7860,
|
| 317 |
+
show_error=True,
|
| 318 |
+
quiet=False,
|
| 319 |
+
# Disable features that can cause HTTP protocol issues
|
| 320 |
+
prevent_thread_lock=False,
|
| 321 |
+
show_tips=False
|
| 322 |
+
)
|