Spaces:
Runtime error
Runtime error
Upload preprocess.py
Browse files- tasks/preprocess.py +177 -0
tasks/preprocess.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import librosa
|
| 3 |
+
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
import warnings
|
| 7 |
+
|
| 8 |
+
SR=12000
|
| 9 |
+
|
| 10 |
+
def basic_stats_dataset(dataset):
|
| 11 |
+
sizes = []
|
| 12 |
+
srs = []
|
| 13 |
+
labels = []
|
| 14 |
+
|
| 15 |
+
for row in dataset:
|
| 16 |
+
signal = row["audio"]["array"]
|
| 17 |
+
sr = row["audio"]["sampling_rate"]
|
| 18 |
+
label = row["label"]
|
| 19 |
+
|
| 20 |
+
sizes.append(signal.size)
|
| 21 |
+
srs.append(sr)
|
| 22 |
+
labels.append(label)
|
| 23 |
+
|
| 24 |
+
sizes = np.array(sizes)
|
| 25 |
+
srs = np.array(srs)
|
| 26 |
+
labels = np.array(labels)
|
| 27 |
+
return sizes, srs, labels
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# This function loads all data in a huggingface dataset, into a numpy array
|
| 31 |
+
def get_raw_data(dataset, pad="constant", dtype=np.float32):
|
| 32 |
+
signals = np.zeros((len(dataset), 36000), dtype=dtype)
|
| 33 |
+
labels = np.zeros(len(dataset), dtype=np.uint8)
|
| 34 |
+
sizes = np.zeros(len(dataset), dtype=int)
|
| 35 |
+
|
| 36 |
+
for i, row in enumerate(dataset):
|
| 37 |
+
signal = row["audio"]["array"]
|
| 38 |
+
sr = row["audio"]["sampling_rate"]
|
| 39 |
+
label = row["label"]
|
| 40 |
+
size = signal.size
|
| 41 |
+
|
| 42 |
+
# RESAMPLING to 12000
|
| 43 |
+
if sr != 12000:
|
| 44 |
+
signal = librosa.resample(signal, orig_sr=sr, target_sr=12000)
|
| 45 |
+
sr = 12000
|
| 46 |
+
assert sr == 12000
|
| 47 |
+
|
| 48 |
+
# Truncate signals with time > 3s
|
| 49 |
+
if signal.size > 36000:
|
| 50 |
+
warnings.warn("Signal > 36000. Truncate the signal")
|
| 51 |
+
signal = signal[:36000]
|
| 52 |
+
|
| 53 |
+
# PADDING short signals
|
| 54 |
+
elif signal.size < 36000:
|
| 55 |
+
if signal.size == 0:
|
| 56 |
+
signal = np.zeros(36000)
|
| 57 |
+
elif pad == "constant":
|
| 58 |
+
signal = np.pad(signal, (0, 36000-signal.size), mode="constant", constant_values=0)
|
| 59 |
+
else:
|
| 60 |
+
signal = np.pad(signal, (0, 36000-signal.size), mode=pad)
|
| 61 |
+
assert signal.size == 36000
|
| 62 |
+
|
| 63 |
+
labels[i] = label
|
| 64 |
+
signals[i, :] = signal
|
| 65 |
+
sizes[i] = size
|
| 66 |
+
|
| 67 |
+
return signals, labels, sizes
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# This is a generator, doing the same as the function above but load data by batch
|
| 71 |
+
# (lower memory usage for inference)
|
| 72 |
+
def get_batch_generator(dataset, bs, pad="constant"):
|
| 73 |
+
def process_signal(row):
|
| 74 |
+
signal = row["audio"]["array"]
|
| 75 |
+
sr = row["audio"]["sampling_rate"]
|
| 76 |
+
label = row["label"]
|
| 77 |
+
size = signal.size
|
| 78 |
+
|
| 79 |
+
# RESAMPLING to 12000
|
| 80 |
+
if sr != 12000:
|
| 81 |
+
signal = librosa.resample(signal, orig_sr=sr, target_sr=12000)
|
| 82 |
+
sr = 12000
|
| 83 |
+
assert sr == 12000
|
| 84 |
+
|
| 85 |
+
# Truncate signals with time > 3s
|
| 86 |
+
if signal.size > 36000:
|
| 87 |
+
warnings.warn("Signal > 36000. Truncate the signal")
|
| 88 |
+
signal = signal[:36000]
|
| 89 |
+
|
| 90 |
+
# PADDING short signals
|
| 91 |
+
elif signal.size < 36000:
|
| 92 |
+
if signal.size == 0:
|
| 93 |
+
signal = np.zeros(36000)
|
| 94 |
+
elif pad == "constant":
|
| 95 |
+
signal = np.pad(signal, (0, 36000-signal.size), mode="constant", constant_values=0)
|
| 96 |
+
else:
|
| 97 |
+
signal = np.pad(signal, (0, 36000-signal.size), mode=pad)
|
| 98 |
+
assert signal.size == 36000
|
| 99 |
+
|
| 100 |
+
return signal, label, size
|
| 101 |
+
|
| 102 |
+
# Initialize batch buffers
|
| 103 |
+
batch_signals = np.zeros((bs, 36000), dtype=np.float32)
|
| 104 |
+
batch_labels = np.zeros(bs, dtype=np.uint8)
|
| 105 |
+
batch_sizes = np.zeros(bs, dtype=int)
|
| 106 |
+
batch_index = 0
|
| 107 |
+
|
| 108 |
+
for row in dataset:
|
| 109 |
+
signal, label, size = process_signal(row)
|
| 110 |
+
batch_signals[batch_index] = signal
|
| 111 |
+
batch_labels[batch_index] = label
|
| 112 |
+
batch_sizes[batch_index] = size
|
| 113 |
+
batch_index += 1
|
| 114 |
+
|
| 115 |
+
if batch_index == bs: # If the batch is full, yield it
|
| 116 |
+
yield batch_signals, batch_labels, batch_sizes
|
| 117 |
+
# Reset batch buffers
|
| 118 |
+
batch_signals = np.zeros((bs, 36000), dtype=np.float32)
|
| 119 |
+
batch_labels = np.zeros(bs, dtype=np.uint8)
|
| 120 |
+
batch_sizes = np.zeros(bs, dtype=int)
|
| 121 |
+
batch_index = 0
|
| 122 |
+
|
| 123 |
+
# Handle the last batch if it is not full
|
| 124 |
+
if batch_index > 0:
|
| 125 |
+
yield batch_signals[:batch_index], batch_labels[:batch_index], batch_sizes[:batch_index]
|
| 126 |
+
|
| 127 |
+
class FeatureExtractor():
|
| 128 |
+
def __init__(self, xgboost_kwargs_mel_spectrogram, xgboost_kwargs_MFCC, cnn_kwargs_spectrogram, mean_spec = 0.17555018, std_spec = 0.19079028):
|
| 129 |
+
self.mel_transform_xgboost = torchaudio.transforms.MelSpectrogram(
|
| 130 |
+
sample_rate=12000,
|
| 131 |
+
**xgboost_kwargs_mel_spectrogram
|
| 132 |
+
).cuda()
|
| 133 |
+
|
| 134 |
+
self.mel_transform_cnn = torchaudio.transforms.MelSpectrogram(
|
| 135 |
+
sample_rate=12000,
|
| 136 |
+
**cnn_kwargs_spectrogram
|
| 137 |
+
).cuda()
|
| 138 |
+
|
| 139 |
+
self.MFCC = torchaudio.transforms.MFCC(
|
| 140 |
+
sample_rate=12000,
|
| 141 |
+
**xgboost_kwargs_MFCC
|
| 142 |
+
).cuda()
|
| 143 |
+
|
| 144 |
+
self.n_mfcc = xgboost_kwargs_MFCC["n_mfcc"]
|
| 145 |
+
self.mean = mean_spec
|
| 146 |
+
self.std = std_spec
|
| 147 |
+
|
| 148 |
+
def transform(self, batch):
|
| 149 |
+
batch = torch.as_tensor(batch).cuda()
|
| 150 |
+
|
| 151 |
+
# XGBOOST features
|
| 152 |
+
mfcc_features = np.zeros((batch.size(0), self.n_mfcc*2), dtype=np.float32)
|
| 153 |
+
mfcc_batch = self.MFCC(batch)
|
| 154 |
+
mfcc_features[:,:self.n_mfcc] = mfcc_batch.mean(-1).cpu().numpy()
|
| 155 |
+
mfcc_features[:,self.n_mfcc:] = mfcc_batch.std(-1).cpu().numpy()
|
| 156 |
+
|
| 157 |
+
mel_spectrograms = self.mel_transform_xgboost(batch)
|
| 158 |
+
mel_spectrograms_delta = torchaudio.functional.compute_deltas(mel_spectrograms)
|
| 159 |
+
e=mel_spectrograms.mean(-1)
|
| 160 |
+
e=mel_spectrograms.mean(-1).cpu()
|
| 161 |
+
mel_features = np.hstack((
|
| 162 |
+
mel_spectrograms.mean(-1).cpu(),
|
| 163 |
+
mel_spectrograms.std(-1).cpu(),
|
| 164 |
+
mel_spectrograms_delta.std(-1).cpu(),
|
| 165 |
+
))
|
| 166 |
+
xgboost_features = np.hstack((mfcc_features, mel_features))
|
| 167 |
+
|
| 168 |
+
# CNN spectrogram
|
| 169 |
+
spectrograms = self.mel_transform_cnn(batch)
|
| 170 |
+
spectrograms = torch.log10(1+spectrograms)
|
| 171 |
+
spectrograms = (spectrograms-self.mean)/self.std
|
| 172 |
+
spectrograms = spectrograms.unsqueeze(1)
|
| 173 |
+
#MEAN = 0.17555018
|
| 174 |
+
#STD = 0.19079028
|
| 175 |
+
|
| 176 |
+
return {"xgboost" : xgboost_features, "CNN": spectrograms}
|
| 177 |
+
|