chatbot_test / app.py
kanninian's picture
Update app.py
e56d196 verified
raw
history blame
2.49 kB
import gradio as gr
from huggingface_hub import InferenceClient
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List
from sentence_transformers import CrossEncoder, util
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import numpy as np
from qa_vector_store import build_qa_vector_store, retrieve_and_rerank, generate_response_from_local_llm
# 建立 FastAPI 應用
app = FastAPI()
# 初始化模型和資料庫
model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
collection_name = model_name.split("/")[-1]
cross_encoder_model = "cross-encoder/mmarco-mMiniLMv2-L12-H384-v1"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct", trust_remote_code=True)
llm_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct", trust_remote_code=True)
# 構建向量資料庫
build_qa_vector_store(model_name, collection_name)
# 輸入格式
class QueryInput(BaseModel):
query: str
top_k: int = 5
# 輸出格式
class SearchResult(BaseModel):
text: str
score: float
# 搜尋+rerank API
@app.post("/search", response_model=List[SearchResult])
def search(input: QueryInput):
reranked = retrieve_and_rerank(input.query, model_name, collection_name, cross_encoder_model, score_threshold=0.5, search_top_k=20, rerank_top_k=input.top_k)
# 如果沒有找到相關答案,則返回 404 錯誤
if not reranked:
raise HTTPException(status_code=404, detail="找不到相關答案,請嘗試換個問題或降低門檻。")
final_passages = [r[0] for r in reranked]
# 使用 LLM 生成回答
answer = generate_response_from_local_llm(input.query, final_passages, tokenizer, llm_model, max_new_tokens=256)
if not answer:
raise HTTPException(status_code=404, detail="無法生成回答,請檢查輸入或模型設定。")
return answer
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()