Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from fastapi import FastAPI, HTTPException, Request | |
from pydantic import BaseModel | |
from typing import List | |
from sentence_transformers import CrossEncoder, util | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import numpy as np | |
from qa_vector_store import build_qa_vector_store, retrieve_and_rerank, generate_response_from_local_llm | |
# 建立 FastAPI 應用 | |
app = FastAPI() | |
# 初始化模型和資料庫 | |
model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
collection_name = model_name.split("/")[-1] | |
cross_encoder_model = "cross-encoder/mmarco-mMiniLMv2-L12-H384-v1" | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct", trust_remote_code=True) | |
llm_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct", trust_remote_code=True) | |
# 構建向量資料庫 | |
build_qa_vector_store(model_name, collection_name) | |
# 輸入格式 | |
class QueryInput(BaseModel): | |
query: str | |
top_k: int = 5 | |
# 輸出格式 | |
class SearchResult(BaseModel): | |
text: str | |
score: float | |
# 搜尋+rerank API | |
def search(input: QueryInput): | |
reranked = retrieve_and_rerank(input.query, model_name, collection_name, cross_encoder_model, score_threshold=0.5, search_top_k=20, rerank_top_k=input.top_k) | |
# 如果沒有找到相關答案,則返回 404 錯誤 | |
if not reranked: | |
raise HTTPException(status_code=404, detail="找不到相關答案,請嘗試換個問題或降低門檻。") | |
final_passages = [r[0] for r in reranked] | |
# 使用 LLM 生成回答 | |
answer = generate_response_from_local_llm(input.query, final_passages, tokenizer, llm_model, max_new_tokens=256) | |
if not answer: | |
raise HTTPException(status_code=404, detail="無法生成回答,請檢查輸入或模型設定。") | |
return answer | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |