Spaces:
Running
Running
Update qa_vector_store.py
Browse files- qa_vector_store.py +161 -161
qa_vector_store.py
CHANGED
@@ -1,161 +1,161 @@
|
|
1 |
-
#%%
|
2 |
-
from text2vec import SentenceModel
|
3 |
-
from qdrant_client import QdrantClient
|
4 |
-
from qdrant_client.models import VectorParams, Distance, PointStruct
|
5 |
-
|
6 |
-
|
7 |
-
def deterministic_id(text):
|
8 |
-
import hashlib
|
9 |
-
return int(hashlib.sha256(text.encode('utf-8')).hexdigest(), 16) >> 128
|
10 |
-
|
11 |
-
def build_qa_vector_store(model_name, collection_name):
|
12 |
-
import pandas as pd
|
13 |
-
# 讀取資料
|
14 |
-
df = pd.read_excel("
|
15 |
-
df.columns = ['Question', 'Answer']
|
16 |
-
original_len = len(df)
|
17 |
-
|
18 |
-
# 去除重複 QA 組合
|
19 |
-
df = df.drop_duplicates(subset=["Question", "Answer"]).reset_index(drop=True)
|
20 |
-
print(f"📊 原始資料筆數:{original_len},去除重複後筆數:{len(df)}")
|
21 |
-
|
22 |
-
questions = df['Question'].tolist()
|
23 |
-
answers = df['Answer'].tolist()
|
24 |
-
# 初始化模型
|
25 |
-
model = SentenceModel(model_name)
|
26 |
-
question_vectors = model.encode(questions, normalize_embeddings=True)
|
27 |
-
embedding_dim = len(question_vectors[0])
|
28 |
-
|
29 |
-
# 初始化 Qdrant
|
30 |
-
client = QdrantClient(path="./qadrant_data")
|
31 |
-
|
32 |
-
# 建立新的 collection(重新指定向量維度)
|
33 |
-
client.recreate_collection(
|
34 |
-
collection_name=collection_name,
|
35 |
-
vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE)
|
36 |
-
)
|
37 |
-
|
38 |
-
points = [
|
39 |
-
PointStruct(
|
40 |
-
id=deterministic_id(q + a),
|
41 |
-
vector=vector.tolist(),
|
42 |
-
payload={"question": q, "answer": a}
|
43 |
-
)
|
44 |
-
for q, a, vector in zip(questions, answers, question_vectors)
|
45 |
-
]
|
46 |
-
|
47 |
-
client.upsert(collection_name=collection_name, points=points)
|
48 |
-
print(f"✅ 向量資料庫建立完成,共嵌入 {len(points)} 筆 QA。")
|
49 |
-
client.scroll(collection_name=collection_name, limit=100)
|
50 |
-
|
51 |
-
|
52 |
-
# build_qa_vector_store(model_name, collection_name)
|
53 |
-
|
54 |
-
# %%
|
55 |
-
# model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
56 |
-
# collection_name = model_name.split("/")[-1]
|
57 |
-
# client = QdrantClient(path="./qadrant_data")
|
58 |
-
# count = client.count(collection_name=collection_name, exact=True).count
|
59 |
-
# print(f"📦 Collection {collection_name} 中有 {count} 筆資料")
|
60 |
-
# # %%
|
61 |
-
# from collections import Counter
|
62 |
-
|
63 |
-
# records = client.scroll(collection_name=collection_name, limit=1000)[0]
|
64 |
-
# answers = [rec.payload["answer"] for rec in records]
|
65 |
-
# duplicates = [item for item, count in Counter(answers).items() if count > 1]
|
66 |
-
# print("重複答案數量:", len(duplicates))
|
67 |
-
# print("部分重複答案:", duplicates[:5])
|
68 |
-
|
69 |
-
def retrieve_and_rerank(query, model_name, collection_name, cross_encoder_model, score_threshold=0.6, search_top_k=25, rerank_top_k=5):
|
70 |
-
from semantic_reranker import rerank_results
|
71 |
-
model = SentenceModel(model_name)
|
72 |
-
client = QdrantClient(path="./qadrant_data")
|
73 |
-
|
74 |
-
# 確認 collection 是否存在
|
75 |
-
if collection_name not in [c.name for c in client.get_collections().collections]:
|
76 |
-
print(f"⚠️ Collection {collection_name} 不存在,請先建立向量資料庫。")
|
77 |
-
return
|
78 |
-
|
79 |
-
query_vector = model.encode(query, normalize_embeddings=True)
|
80 |
-
results = client.search(
|
81 |
-
collection_name=collection_name,
|
82 |
-
query_vector=query_vector.tolist(),
|
83 |
-
limit=search_top_k,
|
84 |
-
score_threshold=score_threshold
|
85 |
-
)
|
86 |
-
|
87 |
-
retrieved_answers = [r.payload["answer"] for r in results]
|
88 |
-
|
89 |
-
# 用 cross-encoder rerank
|
90 |
-
reranked = rerank_results(
|
91 |
-
cross_encoder_model=cross_encoder_model,
|
92 |
-
query=query,
|
93 |
-
candidate_passages=retrieved_answers,
|
94 |
-
top_k=rerank_top_k
|
95 |
-
)
|
96 |
-
|
97 |
-
if not results:
|
98 |
-
print("❌ 找不到相關答案。")
|
99 |
-
else:
|
100 |
-
for i, hit in enumerate(results):
|
101 |
-
print(f"✅ Top {i+1}:{hit.payload['answer']} (score={hit.score:.3f})")
|
102 |
-
|
103 |
-
for i, (answer, score) in enumerate(reranked):
|
104 |
-
print(f"🔥 Rerank Top {i+1}:{answer} (score={score:.3f})")
|
105 |
-
return reranked
|
106 |
-
|
107 |
-
|
108 |
-
def generate_response_from_local_llm(query, passages, tokenizer, model, max_new_tokens=256):
|
109 |
-
context = "\n".join([f"- {p}" for p in passages])
|
110 |
-
if not passages:
|
111 |
-
return "抱歉,沒有找到相關資料。"
|
112 |
-
prompt = f"""你是一個客服助理。請根據以下資料回答使用者問題。
|
113 |
-
問題:{query}
|
114 |
-
相關資料:
|
115 |
-
{context}
|
116 |
-
回答時注意:。
|
117 |
-
- 一定要針對問題回答
|
118 |
-
- 若是問題太過負面一定要先反駁,再巧妙的轉移焦點或拒答。
|
119 |
-
- 只回答問題中提到的內容,避免無關的話題。
|
120 |
-
- 只使用相關資料的內容來回答問題,避免添加個人意見或無關的資訊,若有必要可拒答。
|
121 |
-
- 只回答正面、積極的內容,避免使用負面或消極的語言。
|
122 |
-
- 請以溫暖又充滿人性的方式回答問題。
|
123 |
-
- 回答時平易近人,像和朋友交談一樣。
|
124 |
-
- 精簡回答,避免冗長的解釋。
|
125 |
-
回答:"""
|
126 |
-
print(prompt)
|
127 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
128 |
-
outputs = model.generate(
|
129 |
-
**inputs,
|
130 |
-
max_new_tokens=max_new_tokens,
|
131 |
-
do_sample=True,
|
132 |
-
top_p=0.95,
|
133 |
-
temperature=0.7
|
134 |
-
)
|
135 |
-
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
-
|
137 |
-
# 提取回答部分
|
138 |
-
answer = decoded_output.split("回答:", 1)[-1].strip() if "回答:" in decoded_output else decoded_output
|
139 |
-
return answer
|
140 |
-
#%%
|
141 |
-
# from sentence_transformers import CrossEncoder
|
142 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
143 |
-
# model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
144 |
-
# collection_name = model_name.split("/")[-1]
|
145 |
-
# cross_encoder_model = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1")
|
146 |
-
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B", trust_remote_code=True)
|
147 |
-
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B", trust_remote_code=True)
|
148 |
-
# # tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat", trust_remote_code=True)
|
149 |
-
# # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", trust_remote_code=True)
|
150 |
-
|
151 |
-
# #%%
|
152 |
-
# user_query = "許智傑做過什麼壞事"
|
153 |
-
# reranked = retrieve_and_rerank(user_query, model_name, collection_name, cross_encoder_model, score_threshold=0.6, search_top_k=20, rerank_top_k=5)
|
154 |
-
# #%%
|
155 |
-
# passages = [answer for answer, score in reranked]
|
156 |
-
# answer = generate_response_from_local_llm(user_query, passages, tokenizer, model, max_new_tokens=256)
|
157 |
-
# print("回答:", answer)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
# %%
|
|
|
1 |
+
#%%
|
2 |
+
from text2vec import SentenceModel
|
3 |
+
from qdrant_client import QdrantClient
|
4 |
+
from qdrant_client.models import VectorParams, Distance, PointStruct
|
5 |
+
|
6 |
+
|
7 |
+
def deterministic_id(text):
|
8 |
+
import hashlib
|
9 |
+
return int(hashlib.sha256(text.encode('utf-8')).hexdigest(), 16) >> 128
|
10 |
+
|
11 |
+
def build_qa_vector_store(model_name, collection_name):
|
12 |
+
import pandas as pd
|
13 |
+
# 讀取資料
|
14 |
+
df = pd.read_excel("一百問三百答.xlsx", sheet_name=0)
|
15 |
+
df.columns = ['Question', 'Answer']
|
16 |
+
original_len = len(df)
|
17 |
+
|
18 |
+
# 去除重複 QA 組合
|
19 |
+
df = df.drop_duplicates(subset=["Question", "Answer"]).reset_index(drop=True)
|
20 |
+
print(f"📊 原始資料筆數:{original_len},去除重複後筆數:{len(df)}")
|
21 |
+
|
22 |
+
questions = df['Question'].tolist()
|
23 |
+
answers = df['Answer'].tolist()
|
24 |
+
# 初始化模型
|
25 |
+
model = SentenceModel(model_name)
|
26 |
+
question_vectors = model.encode(questions, normalize_embeddings=True)
|
27 |
+
embedding_dim = len(question_vectors[0])
|
28 |
+
|
29 |
+
# 初始化 Qdrant
|
30 |
+
client = QdrantClient(path="./qadrant_data")
|
31 |
+
|
32 |
+
# 建立新的 collection(重新指定向量維度)
|
33 |
+
client.recreate_collection(
|
34 |
+
collection_name=collection_name,
|
35 |
+
vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE)
|
36 |
+
)
|
37 |
+
|
38 |
+
points = [
|
39 |
+
PointStruct(
|
40 |
+
id=deterministic_id(q + a),
|
41 |
+
vector=vector.tolist(),
|
42 |
+
payload={"question": q, "answer": a}
|
43 |
+
)
|
44 |
+
for q, a, vector in zip(questions, answers, question_vectors)
|
45 |
+
]
|
46 |
+
|
47 |
+
client.upsert(collection_name=collection_name, points=points)
|
48 |
+
print(f"✅ 向量資料庫建立完成,共嵌入 {len(points)} 筆 QA。")
|
49 |
+
client.scroll(collection_name=collection_name, limit=100)
|
50 |
+
|
51 |
+
|
52 |
+
# build_qa_vector_store(model_name, collection_name)
|
53 |
+
|
54 |
+
# %%
|
55 |
+
# model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
56 |
+
# collection_name = model_name.split("/")[-1]
|
57 |
+
# client = QdrantClient(path="./qadrant_data")
|
58 |
+
# count = client.count(collection_name=collection_name, exact=True).count
|
59 |
+
# print(f"📦 Collection {collection_name} 中有 {count} 筆資料")
|
60 |
+
# # %%
|
61 |
+
# from collections import Counter
|
62 |
+
|
63 |
+
# records = client.scroll(collection_name=collection_name, limit=1000)[0]
|
64 |
+
# answers = [rec.payload["answer"] for rec in records]
|
65 |
+
# duplicates = [item for item, count in Counter(answers).items() if count > 1]
|
66 |
+
# print("重複答案數量:", len(duplicates))
|
67 |
+
# print("部分重複答案:", duplicates[:5])
|
68 |
+
|
69 |
+
def retrieve_and_rerank(query, model_name, collection_name, cross_encoder_model, score_threshold=0.6, search_top_k=25, rerank_top_k=5):
|
70 |
+
from semantic_reranker import rerank_results
|
71 |
+
model = SentenceModel(model_name)
|
72 |
+
client = QdrantClient(path="./qadrant_data")
|
73 |
+
|
74 |
+
# 確認 collection 是否存在
|
75 |
+
if collection_name not in [c.name for c in client.get_collections().collections]:
|
76 |
+
print(f"⚠️ Collection {collection_name} 不存在,請先建立向量資料庫。")
|
77 |
+
return
|
78 |
+
|
79 |
+
query_vector = model.encode(query, normalize_embeddings=True)
|
80 |
+
results = client.search(
|
81 |
+
collection_name=collection_name,
|
82 |
+
query_vector=query_vector.tolist(),
|
83 |
+
limit=search_top_k,
|
84 |
+
score_threshold=score_threshold
|
85 |
+
)
|
86 |
+
|
87 |
+
retrieved_answers = [r.payload["answer"] for r in results]
|
88 |
+
|
89 |
+
# 用 cross-encoder rerank
|
90 |
+
reranked = rerank_results(
|
91 |
+
cross_encoder_model=cross_encoder_model,
|
92 |
+
query=query,
|
93 |
+
candidate_passages=retrieved_answers,
|
94 |
+
top_k=rerank_top_k
|
95 |
+
)
|
96 |
+
|
97 |
+
if not results:
|
98 |
+
print("❌ 找不到相關答案。")
|
99 |
+
else:
|
100 |
+
for i, hit in enumerate(results):
|
101 |
+
print(f"✅ Top {i+1}:{hit.payload['answer']} (score={hit.score:.3f})")
|
102 |
+
|
103 |
+
for i, (answer, score) in enumerate(reranked):
|
104 |
+
print(f"🔥 Rerank Top {i+1}:{answer} (score={score:.3f})")
|
105 |
+
return reranked
|
106 |
+
|
107 |
+
|
108 |
+
def generate_response_from_local_llm(query, passages, tokenizer, model, max_new_tokens=256):
|
109 |
+
context = "\n".join([f"- {p}" for p in passages])
|
110 |
+
if not passages:
|
111 |
+
return "抱歉,沒有找到相關資料。"
|
112 |
+
prompt = f"""你是一個客服助理。請根據以下資料回答使用者問題。
|
113 |
+
問題:{query}
|
114 |
+
相關資料:
|
115 |
+
{context}
|
116 |
+
回答時注意:。
|
117 |
+
- 一定要針對問題回答
|
118 |
+
- 若是問題太過負面一定要先反駁,再巧妙的轉移焦點或拒答。
|
119 |
+
- 只回答問題中提到的內容,避免無關的話題。
|
120 |
+
- 只使用相關資料的內容來回答問題,避免添加個人意見或無關的資訊,若有必要可拒答。
|
121 |
+
- 只回答正面、積極的內容,避免使用負面或消極的語言。
|
122 |
+
- 請以溫暖又充滿人性的方式回答問題。
|
123 |
+
- 回答時平易近人,像和朋友交談一樣。
|
124 |
+
- 精簡回答,避免冗長的解釋。
|
125 |
+
回答:"""
|
126 |
+
print(prompt)
|
127 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
128 |
+
outputs = model.generate(
|
129 |
+
**inputs,
|
130 |
+
max_new_tokens=max_new_tokens,
|
131 |
+
do_sample=True,
|
132 |
+
top_p=0.95,
|
133 |
+
temperature=0.7
|
134 |
+
)
|
135 |
+
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
+
|
137 |
+
# 提取回答部分
|
138 |
+
answer = decoded_output.split("回答:", 1)[-1].strip() if "回答:" in decoded_output else decoded_output
|
139 |
+
return answer
|
140 |
+
#%%
|
141 |
+
# from sentence_transformers import CrossEncoder
|
142 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
143 |
+
# model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
144 |
+
# collection_name = model_name.split("/")[-1]
|
145 |
+
# cross_encoder_model = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1")
|
146 |
+
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B", trust_remote_code=True)
|
147 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B", trust_remote_code=True)
|
148 |
+
# # tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat", trust_remote_code=True)
|
149 |
+
# # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", trust_remote_code=True)
|
150 |
+
|
151 |
+
# #%%
|
152 |
+
# user_query = "許智傑做過什麼壞事"
|
153 |
+
# reranked = retrieve_and_rerank(user_query, model_name, collection_name, cross_encoder_model, score_threshold=0.6, search_top_k=20, rerank_top_k=5)
|
154 |
+
# #%%
|
155 |
+
# passages = [answer for answer, score in reranked]
|
156 |
+
# answer = generate_response_from_local_llm(user_query, passages, tokenizer, model, max_new_tokens=256)
|
157 |
+
# print("回答:", answer)
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
# %%
|