Spaces:
Runtime error
Runtime error
Added training script
Browse files- ML Canvas Group 7.pdf +0 -0
- training.ipynb +1625 -0
ML Canvas Group 7.pdf
ADDED
|
Binary file (110 kB). View file
|
|
|
training.ipynb
ADDED
|
@@ -0,0 +1,1625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": [],
|
| 7 |
+
"gpuType": "T4"
|
| 8 |
+
},
|
| 9 |
+
"kernelspec": {
|
| 10 |
+
"name": "python3",
|
| 11 |
+
"display_name": "Python 3"
|
| 12 |
+
},
|
| 13 |
+
"language_info": {
|
| 14 |
+
"name": "python"
|
| 15 |
+
},
|
| 16 |
+
"accelerator": "GPU",
|
| 17 |
+
"widgets": {
|
| 18 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 19 |
+
"e68b6e6997844bf788a057f9c7feedfb": {
|
| 20 |
+
"model_module": "@jupyter-widgets/controls",
|
| 21 |
+
"model_name": "HBoxModel",
|
| 22 |
+
"model_module_version": "1.5.0",
|
| 23 |
+
"state": {
|
| 24 |
+
"_dom_classes": [],
|
| 25 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 26 |
+
"_model_module_version": "1.5.0",
|
| 27 |
+
"_model_name": "HBoxModel",
|
| 28 |
+
"_view_count": null,
|
| 29 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 30 |
+
"_view_module_version": "1.5.0",
|
| 31 |
+
"_view_name": "HBoxView",
|
| 32 |
+
"box_style": "",
|
| 33 |
+
"children": [
|
| 34 |
+
"IPY_MODEL_295e4080ccd64e48806a36b83e50ddfa",
|
| 35 |
+
"IPY_MODEL_c4025862f06b412cb99165b67ad7daae",
|
| 36 |
+
"IPY_MODEL_5ac369dab692489cb13cdb664c47fd96"
|
| 37 |
+
],
|
| 38 |
+
"layout": "IPY_MODEL_434aa0b7bd76440d9b9b64d8b53133d3"
|
| 39 |
+
}
|
| 40 |
+
},
|
| 41 |
+
"295e4080ccd64e48806a36b83e50ddfa": {
|
| 42 |
+
"model_module": "@jupyter-widgets/controls",
|
| 43 |
+
"model_name": "HTMLModel",
|
| 44 |
+
"model_module_version": "1.5.0",
|
| 45 |
+
"state": {
|
| 46 |
+
"_dom_classes": [],
|
| 47 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 48 |
+
"_model_module_version": "1.5.0",
|
| 49 |
+
"_model_name": "HTMLModel",
|
| 50 |
+
"_view_count": null,
|
| 51 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 52 |
+
"_view_module_version": "1.5.0",
|
| 53 |
+
"_view_name": "HTMLView",
|
| 54 |
+
"description": "",
|
| 55 |
+
"description_tooltip": null,
|
| 56 |
+
"layout": "IPY_MODEL_9e2a1fea814f408ebb4d15db83b1130b",
|
| 57 |
+
"placeholder": "",
|
| 58 |
+
"style": "IPY_MODEL_4a2f178864244d68bd915ee57379251d",
|
| 59 |
+
"value": "Map: 100%"
|
| 60 |
+
}
|
| 61 |
+
},
|
| 62 |
+
"c4025862f06b412cb99165b67ad7daae": {
|
| 63 |
+
"model_module": "@jupyter-widgets/controls",
|
| 64 |
+
"model_name": "FloatProgressModel",
|
| 65 |
+
"model_module_version": "1.5.0",
|
| 66 |
+
"state": {
|
| 67 |
+
"_dom_classes": [],
|
| 68 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 69 |
+
"_model_module_version": "1.5.0",
|
| 70 |
+
"_model_name": "FloatProgressModel",
|
| 71 |
+
"_view_count": null,
|
| 72 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 73 |
+
"_view_module_version": "1.5.0",
|
| 74 |
+
"_view_name": "ProgressView",
|
| 75 |
+
"bar_style": "success",
|
| 76 |
+
"description": "",
|
| 77 |
+
"description_tooltip": null,
|
| 78 |
+
"layout": "IPY_MODEL_7125f94d482a46999fd4dd3be1b3e87e",
|
| 79 |
+
"max": 1148,
|
| 80 |
+
"min": 0,
|
| 81 |
+
"orientation": "horizontal",
|
| 82 |
+
"style": "IPY_MODEL_96486cdef9714482a4ffa2aca1b3628b",
|
| 83 |
+
"value": 1148
|
| 84 |
+
}
|
| 85 |
+
},
|
| 86 |
+
"5ac369dab692489cb13cdb664c47fd96": {
|
| 87 |
+
"model_module": "@jupyter-widgets/controls",
|
| 88 |
+
"model_name": "HTMLModel",
|
| 89 |
+
"model_module_version": "1.5.0",
|
| 90 |
+
"state": {
|
| 91 |
+
"_dom_classes": [],
|
| 92 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 93 |
+
"_model_module_version": "1.5.0",
|
| 94 |
+
"_model_name": "HTMLModel",
|
| 95 |
+
"_view_count": null,
|
| 96 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 97 |
+
"_view_module_version": "1.5.0",
|
| 98 |
+
"_view_name": "HTMLView",
|
| 99 |
+
"description": "",
|
| 100 |
+
"description_tooltip": null,
|
| 101 |
+
"layout": "IPY_MODEL_2364eb3ce5b345788902c5f9d316a00a",
|
| 102 |
+
"placeholder": "",
|
| 103 |
+
"style": "IPY_MODEL_52f799ea10d4403cb18e33ba80d739d3",
|
| 104 |
+
"value": " 1148/1148 [00:01<00:00, 781.70 examples/s]"
|
| 105 |
+
}
|
| 106 |
+
},
|
| 107 |
+
"434aa0b7bd76440d9b9b64d8b53133d3": {
|
| 108 |
+
"model_module": "@jupyter-widgets/base",
|
| 109 |
+
"model_name": "LayoutModel",
|
| 110 |
+
"model_module_version": "1.2.0",
|
| 111 |
+
"state": {
|
| 112 |
+
"_model_module": "@jupyter-widgets/base",
|
| 113 |
+
"_model_module_version": "1.2.0",
|
| 114 |
+
"_model_name": "LayoutModel",
|
| 115 |
+
"_view_count": null,
|
| 116 |
+
"_view_module": "@jupyter-widgets/base",
|
| 117 |
+
"_view_module_version": "1.2.0",
|
| 118 |
+
"_view_name": "LayoutView",
|
| 119 |
+
"align_content": null,
|
| 120 |
+
"align_items": null,
|
| 121 |
+
"align_self": null,
|
| 122 |
+
"border": null,
|
| 123 |
+
"bottom": null,
|
| 124 |
+
"display": null,
|
| 125 |
+
"flex": null,
|
| 126 |
+
"flex_flow": null,
|
| 127 |
+
"grid_area": null,
|
| 128 |
+
"grid_auto_columns": null,
|
| 129 |
+
"grid_auto_flow": null,
|
| 130 |
+
"grid_auto_rows": null,
|
| 131 |
+
"grid_column": null,
|
| 132 |
+
"grid_gap": null,
|
| 133 |
+
"grid_row": null,
|
| 134 |
+
"grid_template_areas": null,
|
| 135 |
+
"grid_template_columns": null,
|
| 136 |
+
"grid_template_rows": null,
|
| 137 |
+
"height": null,
|
| 138 |
+
"justify_content": null,
|
| 139 |
+
"justify_items": null,
|
| 140 |
+
"left": null,
|
| 141 |
+
"margin": null,
|
| 142 |
+
"max_height": null,
|
| 143 |
+
"max_width": null,
|
| 144 |
+
"min_height": null,
|
| 145 |
+
"min_width": null,
|
| 146 |
+
"object_fit": null,
|
| 147 |
+
"object_position": null,
|
| 148 |
+
"order": null,
|
| 149 |
+
"overflow": null,
|
| 150 |
+
"overflow_x": null,
|
| 151 |
+
"overflow_y": null,
|
| 152 |
+
"padding": null,
|
| 153 |
+
"right": null,
|
| 154 |
+
"top": null,
|
| 155 |
+
"visibility": null,
|
| 156 |
+
"width": null
|
| 157 |
+
}
|
| 158 |
+
},
|
| 159 |
+
"9e2a1fea814f408ebb4d15db83b1130b": {
|
| 160 |
+
"model_module": "@jupyter-widgets/base",
|
| 161 |
+
"model_name": "LayoutModel",
|
| 162 |
+
"model_module_version": "1.2.0",
|
| 163 |
+
"state": {
|
| 164 |
+
"_model_module": "@jupyter-widgets/base",
|
| 165 |
+
"_model_module_version": "1.2.0",
|
| 166 |
+
"_model_name": "LayoutModel",
|
| 167 |
+
"_view_count": null,
|
| 168 |
+
"_view_module": "@jupyter-widgets/base",
|
| 169 |
+
"_view_module_version": "1.2.0",
|
| 170 |
+
"_view_name": "LayoutView",
|
| 171 |
+
"align_content": null,
|
| 172 |
+
"align_items": null,
|
| 173 |
+
"align_self": null,
|
| 174 |
+
"border": null,
|
| 175 |
+
"bottom": null,
|
| 176 |
+
"display": null,
|
| 177 |
+
"flex": null,
|
| 178 |
+
"flex_flow": null,
|
| 179 |
+
"grid_area": null,
|
| 180 |
+
"grid_auto_columns": null,
|
| 181 |
+
"grid_auto_flow": null,
|
| 182 |
+
"grid_auto_rows": null,
|
| 183 |
+
"grid_column": null,
|
| 184 |
+
"grid_gap": null,
|
| 185 |
+
"grid_row": null,
|
| 186 |
+
"grid_template_areas": null,
|
| 187 |
+
"grid_template_columns": null,
|
| 188 |
+
"grid_template_rows": null,
|
| 189 |
+
"height": null,
|
| 190 |
+
"justify_content": null,
|
| 191 |
+
"justify_items": null,
|
| 192 |
+
"left": null,
|
| 193 |
+
"margin": null,
|
| 194 |
+
"max_height": null,
|
| 195 |
+
"max_width": null,
|
| 196 |
+
"min_height": null,
|
| 197 |
+
"min_width": null,
|
| 198 |
+
"object_fit": null,
|
| 199 |
+
"object_position": null,
|
| 200 |
+
"order": null,
|
| 201 |
+
"overflow": null,
|
| 202 |
+
"overflow_x": null,
|
| 203 |
+
"overflow_y": null,
|
| 204 |
+
"padding": null,
|
| 205 |
+
"right": null,
|
| 206 |
+
"top": null,
|
| 207 |
+
"visibility": null,
|
| 208 |
+
"width": null
|
| 209 |
+
}
|
| 210 |
+
},
|
| 211 |
+
"4a2f178864244d68bd915ee57379251d": {
|
| 212 |
+
"model_module": "@jupyter-widgets/controls",
|
| 213 |
+
"model_name": "DescriptionStyleModel",
|
| 214 |
+
"model_module_version": "1.5.0",
|
| 215 |
+
"state": {
|
| 216 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 217 |
+
"_model_module_version": "1.5.0",
|
| 218 |
+
"_model_name": "DescriptionStyleModel",
|
| 219 |
+
"_view_count": null,
|
| 220 |
+
"_view_module": "@jupyter-widgets/base",
|
| 221 |
+
"_view_module_version": "1.2.0",
|
| 222 |
+
"_view_name": "StyleView",
|
| 223 |
+
"description_width": ""
|
| 224 |
+
}
|
| 225 |
+
},
|
| 226 |
+
"7125f94d482a46999fd4dd3be1b3e87e": {
|
| 227 |
+
"model_module": "@jupyter-widgets/base",
|
| 228 |
+
"model_name": "LayoutModel",
|
| 229 |
+
"model_module_version": "1.2.0",
|
| 230 |
+
"state": {
|
| 231 |
+
"_model_module": "@jupyter-widgets/base",
|
| 232 |
+
"_model_module_version": "1.2.0",
|
| 233 |
+
"_model_name": "LayoutModel",
|
| 234 |
+
"_view_count": null,
|
| 235 |
+
"_view_module": "@jupyter-widgets/base",
|
| 236 |
+
"_view_module_version": "1.2.0",
|
| 237 |
+
"_view_name": "LayoutView",
|
| 238 |
+
"align_content": null,
|
| 239 |
+
"align_items": null,
|
| 240 |
+
"align_self": null,
|
| 241 |
+
"border": null,
|
| 242 |
+
"bottom": null,
|
| 243 |
+
"display": null,
|
| 244 |
+
"flex": null,
|
| 245 |
+
"flex_flow": null,
|
| 246 |
+
"grid_area": null,
|
| 247 |
+
"grid_auto_columns": null,
|
| 248 |
+
"grid_auto_flow": null,
|
| 249 |
+
"grid_auto_rows": null,
|
| 250 |
+
"grid_column": null,
|
| 251 |
+
"grid_gap": null,
|
| 252 |
+
"grid_row": null,
|
| 253 |
+
"grid_template_areas": null,
|
| 254 |
+
"grid_template_columns": null,
|
| 255 |
+
"grid_template_rows": null,
|
| 256 |
+
"height": null,
|
| 257 |
+
"justify_content": null,
|
| 258 |
+
"justify_items": null,
|
| 259 |
+
"left": null,
|
| 260 |
+
"margin": null,
|
| 261 |
+
"max_height": null,
|
| 262 |
+
"max_width": null,
|
| 263 |
+
"min_height": null,
|
| 264 |
+
"min_width": null,
|
| 265 |
+
"object_fit": null,
|
| 266 |
+
"object_position": null,
|
| 267 |
+
"order": null,
|
| 268 |
+
"overflow": null,
|
| 269 |
+
"overflow_x": null,
|
| 270 |
+
"overflow_y": null,
|
| 271 |
+
"padding": null,
|
| 272 |
+
"right": null,
|
| 273 |
+
"top": null,
|
| 274 |
+
"visibility": null,
|
| 275 |
+
"width": null
|
| 276 |
+
}
|
| 277 |
+
},
|
| 278 |
+
"96486cdef9714482a4ffa2aca1b3628b": {
|
| 279 |
+
"model_module": "@jupyter-widgets/controls",
|
| 280 |
+
"model_name": "ProgressStyleModel",
|
| 281 |
+
"model_module_version": "1.5.0",
|
| 282 |
+
"state": {
|
| 283 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 284 |
+
"_model_module_version": "1.5.0",
|
| 285 |
+
"_model_name": "ProgressStyleModel",
|
| 286 |
+
"_view_count": null,
|
| 287 |
+
"_view_module": "@jupyter-widgets/base",
|
| 288 |
+
"_view_module_version": "1.2.0",
|
| 289 |
+
"_view_name": "StyleView",
|
| 290 |
+
"bar_color": null,
|
| 291 |
+
"description_width": ""
|
| 292 |
+
}
|
| 293 |
+
},
|
| 294 |
+
"2364eb3ce5b345788902c5f9d316a00a": {
|
| 295 |
+
"model_module": "@jupyter-widgets/base",
|
| 296 |
+
"model_name": "LayoutModel",
|
| 297 |
+
"model_module_version": "1.2.0",
|
| 298 |
+
"state": {
|
| 299 |
+
"_model_module": "@jupyter-widgets/base",
|
| 300 |
+
"_model_module_version": "1.2.0",
|
| 301 |
+
"_model_name": "LayoutModel",
|
| 302 |
+
"_view_count": null,
|
| 303 |
+
"_view_module": "@jupyter-widgets/base",
|
| 304 |
+
"_view_module_version": "1.2.0",
|
| 305 |
+
"_view_name": "LayoutView",
|
| 306 |
+
"align_content": null,
|
| 307 |
+
"align_items": null,
|
| 308 |
+
"align_self": null,
|
| 309 |
+
"border": null,
|
| 310 |
+
"bottom": null,
|
| 311 |
+
"display": null,
|
| 312 |
+
"flex": null,
|
| 313 |
+
"flex_flow": null,
|
| 314 |
+
"grid_area": null,
|
| 315 |
+
"grid_auto_columns": null,
|
| 316 |
+
"grid_auto_flow": null,
|
| 317 |
+
"grid_auto_rows": null,
|
| 318 |
+
"grid_column": null,
|
| 319 |
+
"grid_gap": null,
|
| 320 |
+
"grid_row": null,
|
| 321 |
+
"grid_template_areas": null,
|
| 322 |
+
"grid_template_columns": null,
|
| 323 |
+
"grid_template_rows": null,
|
| 324 |
+
"height": null,
|
| 325 |
+
"justify_content": null,
|
| 326 |
+
"justify_items": null,
|
| 327 |
+
"left": null,
|
| 328 |
+
"margin": null,
|
| 329 |
+
"max_height": null,
|
| 330 |
+
"max_width": null,
|
| 331 |
+
"min_height": null,
|
| 332 |
+
"min_width": null,
|
| 333 |
+
"object_fit": null,
|
| 334 |
+
"object_position": null,
|
| 335 |
+
"order": null,
|
| 336 |
+
"overflow": null,
|
| 337 |
+
"overflow_x": null,
|
| 338 |
+
"overflow_y": null,
|
| 339 |
+
"padding": null,
|
| 340 |
+
"right": null,
|
| 341 |
+
"top": null,
|
| 342 |
+
"visibility": null,
|
| 343 |
+
"width": null
|
| 344 |
+
}
|
| 345 |
+
},
|
| 346 |
+
"52f799ea10d4403cb18e33ba80d739d3": {
|
| 347 |
+
"model_module": "@jupyter-widgets/controls",
|
| 348 |
+
"model_name": "DescriptionStyleModel",
|
| 349 |
+
"model_module_version": "1.5.0",
|
| 350 |
+
"state": {
|
| 351 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 352 |
+
"_model_module_version": "1.5.0",
|
| 353 |
+
"_model_name": "DescriptionStyleModel",
|
| 354 |
+
"_view_count": null,
|
| 355 |
+
"_view_module": "@jupyter-widgets/base",
|
| 356 |
+
"_view_module_version": "1.2.0",
|
| 357 |
+
"_view_name": "StyleView",
|
| 358 |
+
"description_width": ""
|
| 359 |
+
}
|
| 360 |
+
},
|
| 361 |
+
"3e18acb6f1504f4dace716a96e8d90f4": {
|
| 362 |
+
"model_module": "@jupyter-widgets/controls",
|
| 363 |
+
"model_name": "HBoxModel",
|
| 364 |
+
"model_module_version": "1.5.0",
|
| 365 |
+
"state": {
|
| 366 |
+
"_dom_classes": [],
|
| 367 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 368 |
+
"_model_module_version": "1.5.0",
|
| 369 |
+
"_model_name": "HBoxModel",
|
| 370 |
+
"_view_count": null,
|
| 371 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 372 |
+
"_view_module_version": "1.5.0",
|
| 373 |
+
"_view_name": "HBoxView",
|
| 374 |
+
"box_style": "",
|
| 375 |
+
"children": [
|
| 376 |
+
"IPY_MODEL_953e7d76140e4ed2ade688ccd5467a75",
|
| 377 |
+
"IPY_MODEL_3a70d75b4eb949598e7cb9430acfcf81",
|
| 378 |
+
"IPY_MODEL_54719990ff1f40cb8fed06badb378d01"
|
| 379 |
+
],
|
| 380 |
+
"layout": "IPY_MODEL_5d1be2eaa2c143bbbc35f7d0f33f64de"
|
| 381 |
+
}
|
| 382 |
+
},
|
| 383 |
+
"953e7d76140e4ed2ade688ccd5467a75": {
|
| 384 |
+
"model_module": "@jupyter-widgets/controls",
|
| 385 |
+
"model_name": "HTMLModel",
|
| 386 |
+
"model_module_version": "1.5.0",
|
| 387 |
+
"state": {
|
| 388 |
+
"_dom_classes": [],
|
| 389 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 390 |
+
"_model_module_version": "1.5.0",
|
| 391 |
+
"_model_name": "HTMLModel",
|
| 392 |
+
"_view_count": null,
|
| 393 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 394 |
+
"_view_module_version": "1.5.0",
|
| 395 |
+
"_view_name": "HTMLView",
|
| 396 |
+
"description": "",
|
| 397 |
+
"description_tooltip": null,
|
| 398 |
+
"layout": "IPY_MODEL_002c9d35efa54fccb875a08e7059997f",
|
| 399 |
+
"placeholder": "",
|
| 400 |
+
"style": "IPY_MODEL_21dd8d7b7e5a4e27922ff1e3bec7745a",
|
| 401 |
+
"value": "Map: 100%"
|
| 402 |
+
}
|
| 403 |
+
},
|
| 404 |
+
"3a70d75b4eb949598e7cb9430acfcf81": {
|
| 405 |
+
"model_module": "@jupyter-widgets/controls",
|
| 406 |
+
"model_name": "FloatProgressModel",
|
| 407 |
+
"model_module_version": "1.5.0",
|
| 408 |
+
"state": {
|
| 409 |
+
"_dom_classes": [],
|
| 410 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 411 |
+
"_model_module_version": "1.5.0",
|
| 412 |
+
"_model_name": "FloatProgressModel",
|
| 413 |
+
"_view_count": null,
|
| 414 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 415 |
+
"_view_module_version": "1.5.0",
|
| 416 |
+
"_view_name": "ProgressView",
|
| 417 |
+
"bar_style": "success",
|
| 418 |
+
"description": "",
|
| 419 |
+
"description_tooltip": null,
|
| 420 |
+
"layout": "IPY_MODEL_48abc963896a404886fbcf75b0b19bb9",
|
| 421 |
+
"max": 287,
|
| 422 |
+
"min": 0,
|
| 423 |
+
"orientation": "horizontal",
|
| 424 |
+
"style": "IPY_MODEL_87e3a17419334bf8b2448a8914f9d721",
|
| 425 |
+
"value": 287
|
| 426 |
+
}
|
| 427 |
+
},
|
| 428 |
+
"54719990ff1f40cb8fed06badb378d01": {
|
| 429 |
+
"model_module": "@jupyter-widgets/controls",
|
| 430 |
+
"model_name": "HTMLModel",
|
| 431 |
+
"model_module_version": "1.5.0",
|
| 432 |
+
"state": {
|
| 433 |
+
"_dom_classes": [],
|
| 434 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 435 |
+
"_model_module_version": "1.5.0",
|
| 436 |
+
"_model_name": "HTMLModel",
|
| 437 |
+
"_view_count": null,
|
| 438 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 439 |
+
"_view_module_version": "1.5.0",
|
| 440 |
+
"_view_name": "HTMLView",
|
| 441 |
+
"description": "",
|
| 442 |
+
"description_tooltip": null,
|
| 443 |
+
"layout": "IPY_MODEL_f8303a91b4084791971947ca45c6b459",
|
| 444 |
+
"placeholder": "",
|
| 445 |
+
"style": "IPY_MODEL_a878599cc49347a896c793f3c45914e3",
|
| 446 |
+
"value": " 287/287 [00:00<00:00, 556.23 examples/s]"
|
| 447 |
+
}
|
| 448 |
+
},
|
| 449 |
+
"5d1be2eaa2c143bbbc35f7d0f33f64de": {
|
| 450 |
+
"model_module": "@jupyter-widgets/base",
|
| 451 |
+
"model_name": "LayoutModel",
|
| 452 |
+
"model_module_version": "1.2.0",
|
| 453 |
+
"state": {
|
| 454 |
+
"_model_module": "@jupyter-widgets/base",
|
| 455 |
+
"_model_module_version": "1.2.0",
|
| 456 |
+
"_model_name": "LayoutModel",
|
| 457 |
+
"_view_count": null,
|
| 458 |
+
"_view_module": "@jupyter-widgets/base",
|
| 459 |
+
"_view_module_version": "1.2.0",
|
| 460 |
+
"_view_name": "LayoutView",
|
| 461 |
+
"align_content": null,
|
| 462 |
+
"align_items": null,
|
| 463 |
+
"align_self": null,
|
| 464 |
+
"border": null,
|
| 465 |
+
"bottom": null,
|
| 466 |
+
"display": null,
|
| 467 |
+
"flex": null,
|
| 468 |
+
"flex_flow": null,
|
| 469 |
+
"grid_area": null,
|
| 470 |
+
"grid_auto_columns": null,
|
| 471 |
+
"grid_auto_flow": null,
|
| 472 |
+
"grid_auto_rows": null,
|
| 473 |
+
"grid_column": null,
|
| 474 |
+
"grid_gap": null,
|
| 475 |
+
"grid_row": null,
|
| 476 |
+
"grid_template_areas": null,
|
| 477 |
+
"grid_template_columns": null,
|
| 478 |
+
"grid_template_rows": null,
|
| 479 |
+
"height": null,
|
| 480 |
+
"justify_content": null,
|
| 481 |
+
"justify_items": null,
|
| 482 |
+
"left": null,
|
| 483 |
+
"margin": null,
|
| 484 |
+
"max_height": null,
|
| 485 |
+
"max_width": null,
|
| 486 |
+
"min_height": null,
|
| 487 |
+
"min_width": null,
|
| 488 |
+
"object_fit": null,
|
| 489 |
+
"object_position": null,
|
| 490 |
+
"order": null,
|
| 491 |
+
"overflow": null,
|
| 492 |
+
"overflow_x": null,
|
| 493 |
+
"overflow_y": null,
|
| 494 |
+
"padding": null,
|
| 495 |
+
"right": null,
|
| 496 |
+
"top": null,
|
| 497 |
+
"visibility": null,
|
| 498 |
+
"width": null
|
| 499 |
+
}
|
| 500 |
+
},
|
| 501 |
+
"002c9d35efa54fccb875a08e7059997f": {
|
| 502 |
+
"model_module": "@jupyter-widgets/base",
|
| 503 |
+
"model_name": "LayoutModel",
|
| 504 |
+
"model_module_version": "1.2.0",
|
| 505 |
+
"state": {
|
| 506 |
+
"_model_module": "@jupyter-widgets/base",
|
| 507 |
+
"_model_module_version": "1.2.0",
|
| 508 |
+
"_model_name": "LayoutModel",
|
| 509 |
+
"_view_count": null,
|
| 510 |
+
"_view_module": "@jupyter-widgets/base",
|
| 511 |
+
"_view_module_version": "1.2.0",
|
| 512 |
+
"_view_name": "LayoutView",
|
| 513 |
+
"align_content": null,
|
| 514 |
+
"align_items": null,
|
| 515 |
+
"align_self": null,
|
| 516 |
+
"border": null,
|
| 517 |
+
"bottom": null,
|
| 518 |
+
"display": null,
|
| 519 |
+
"flex": null,
|
| 520 |
+
"flex_flow": null,
|
| 521 |
+
"grid_area": null,
|
| 522 |
+
"grid_auto_columns": null,
|
| 523 |
+
"grid_auto_flow": null,
|
| 524 |
+
"grid_auto_rows": null,
|
| 525 |
+
"grid_column": null,
|
| 526 |
+
"grid_gap": null,
|
| 527 |
+
"grid_row": null,
|
| 528 |
+
"grid_template_areas": null,
|
| 529 |
+
"grid_template_columns": null,
|
| 530 |
+
"grid_template_rows": null,
|
| 531 |
+
"height": null,
|
| 532 |
+
"justify_content": null,
|
| 533 |
+
"justify_items": null,
|
| 534 |
+
"left": null,
|
| 535 |
+
"margin": null,
|
| 536 |
+
"max_height": null,
|
| 537 |
+
"max_width": null,
|
| 538 |
+
"min_height": null,
|
| 539 |
+
"min_width": null,
|
| 540 |
+
"object_fit": null,
|
| 541 |
+
"object_position": null,
|
| 542 |
+
"order": null,
|
| 543 |
+
"overflow": null,
|
| 544 |
+
"overflow_x": null,
|
| 545 |
+
"overflow_y": null,
|
| 546 |
+
"padding": null,
|
| 547 |
+
"right": null,
|
| 548 |
+
"top": null,
|
| 549 |
+
"visibility": null,
|
| 550 |
+
"width": null
|
| 551 |
+
}
|
| 552 |
+
},
|
| 553 |
+
"21dd8d7b7e5a4e27922ff1e3bec7745a": {
|
| 554 |
+
"model_module": "@jupyter-widgets/controls",
|
| 555 |
+
"model_name": "DescriptionStyleModel",
|
| 556 |
+
"model_module_version": "1.5.0",
|
| 557 |
+
"state": {
|
| 558 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 559 |
+
"_model_module_version": "1.5.0",
|
| 560 |
+
"_model_name": "DescriptionStyleModel",
|
| 561 |
+
"_view_count": null,
|
| 562 |
+
"_view_module": "@jupyter-widgets/base",
|
| 563 |
+
"_view_module_version": "1.2.0",
|
| 564 |
+
"_view_name": "StyleView",
|
| 565 |
+
"description_width": ""
|
| 566 |
+
}
|
| 567 |
+
},
|
| 568 |
+
"48abc963896a404886fbcf75b0b19bb9": {
|
| 569 |
+
"model_module": "@jupyter-widgets/base",
|
| 570 |
+
"model_name": "LayoutModel",
|
| 571 |
+
"model_module_version": "1.2.0",
|
| 572 |
+
"state": {
|
| 573 |
+
"_model_module": "@jupyter-widgets/base",
|
| 574 |
+
"_model_module_version": "1.2.0",
|
| 575 |
+
"_model_name": "LayoutModel",
|
| 576 |
+
"_view_count": null,
|
| 577 |
+
"_view_module": "@jupyter-widgets/base",
|
| 578 |
+
"_view_module_version": "1.2.0",
|
| 579 |
+
"_view_name": "LayoutView",
|
| 580 |
+
"align_content": null,
|
| 581 |
+
"align_items": null,
|
| 582 |
+
"align_self": null,
|
| 583 |
+
"border": null,
|
| 584 |
+
"bottom": null,
|
| 585 |
+
"display": null,
|
| 586 |
+
"flex": null,
|
| 587 |
+
"flex_flow": null,
|
| 588 |
+
"grid_area": null,
|
| 589 |
+
"grid_auto_columns": null,
|
| 590 |
+
"grid_auto_flow": null,
|
| 591 |
+
"grid_auto_rows": null,
|
| 592 |
+
"grid_column": null,
|
| 593 |
+
"grid_gap": null,
|
| 594 |
+
"grid_row": null,
|
| 595 |
+
"grid_template_areas": null,
|
| 596 |
+
"grid_template_columns": null,
|
| 597 |
+
"grid_template_rows": null,
|
| 598 |
+
"height": null,
|
| 599 |
+
"justify_content": null,
|
| 600 |
+
"justify_items": null,
|
| 601 |
+
"left": null,
|
| 602 |
+
"margin": null,
|
| 603 |
+
"max_height": null,
|
| 604 |
+
"max_width": null,
|
| 605 |
+
"min_height": null,
|
| 606 |
+
"min_width": null,
|
| 607 |
+
"object_fit": null,
|
| 608 |
+
"object_position": null,
|
| 609 |
+
"order": null,
|
| 610 |
+
"overflow": null,
|
| 611 |
+
"overflow_x": null,
|
| 612 |
+
"overflow_y": null,
|
| 613 |
+
"padding": null,
|
| 614 |
+
"right": null,
|
| 615 |
+
"top": null,
|
| 616 |
+
"visibility": null,
|
| 617 |
+
"width": null
|
| 618 |
+
}
|
| 619 |
+
},
|
| 620 |
+
"87e3a17419334bf8b2448a8914f9d721": {
|
| 621 |
+
"model_module": "@jupyter-widgets/controls",
|
| 622 |
+
"model_name": "ProgressStyleModel",
|
| 623 |
+
"model_module_version": "1.5.0",
|
| 624 |
+
"state": {
|
| 625 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 626 |
+
"_model_module_version": "1.5.0",
|
| 627 |
+
"_model_name": "ProgressStyleModel",
|
| 628 |
+
"_view_count": null,
|
| 629 |
+
"_view_module": "@jupyter-widgets/base",
|
| 630 |
+
"_view_module_version": "1.2.0",
|
| 631 |
+
"_view_name": "StyleView",
|
| 632 |
+
"bar_color": null,
|
| 633 |
+
"description_width": ""
|
| 634 |
+
}
|
| 635 |
+
},
|
| 636 |
+
"f8303a91b4084791971947ca45c6b459": {
|
| 637 |
+
"model_module": "@jupyter-widgets/base",
|
| 638 |
+
"model_name": "LayoutModel",
|
| 639 |
+
"model_module_version": "1.2.0",
|
| 640 |
+
"state": {
|
| 641 |
+
"_model_module": "@jupyter-widgets/base",
|
| 642 |
+
"_model_module_version": "1.2.0",
|
| 643 |
+
"_model_name": "LayoutModel",
|
| 644 |
+
"_view_count": null,
|
| 645 |
+
"_view_module": "@jupyter-widgets/base",
|
| 646 |
+
"_view_module_version": "1.2.0",
|
| 647 |
+
"_view_name": "LayoutView",
|
| 648 |
+
"align_content": null,
|
| 649 |
+
"align_items": null,
|
| 650 |
+
"align_self": null,
|
| 651 |
+
"border": null,
|
| 652 |
+
"bottom": null,
|
| 653 |
+
"display": null,
|
| 654 |
+
"flex": null,
|
| 655 |
+
"flex_flow": null,
|
| 656 |
+
"grid_area": null,
|
| 657 |
+
"grid_auto_columns": null,
|
| 658 |
+
"grid_auto_flow": null,
|
| 659 |
+
"grid_auto_rows": null,
|
| 660 |
+
"grid_column": null,
|
| 661 |
+
"grid_gap": null,
|
| 662 |
+
"grid_row": null,
|
| 663 |
+
"grid_template_areas": null,
|
| 664 |
+
"grid_template_columns": null,
|
| 665 |
+
"grid_template_rows": null,
|
| 666 |
+
"height": null,
|
| 667 |
+
"justify_content": null,
|
| 668 |
+
"justify_items": null,
|
| 669 |
+
"left": null,
|
| 670 |
+
"margin": null,
|
| 671 |
+
"max_height": null,
|
| 672 |
+
"max_width": null,
|
| 673 |
+
"min_height": null,
|
| 674 |
+
"min_width": null,
|
| 675 |
+
"object_fit": null,
|
| 676 |
+
"object_position": null,
|
| 677 |
+
"order": null,
|
| 678 |
+
"overflow": null,
|
| 679 |
+
"overflow_x": null,
|
| 680 |
+
"overflow_y": null,
|
| 681 |
+
"padding": null,
|
| 682 |
+
"right": null,
|
| 683 |
+
"top": null,
|
| 684 |
+
"visibility": null,
|
| 685 |
+
"width": null
|
| 686 |
+
}
|
| 687 |
+
},
|
| 688 |
+
"a878599cc49347a896c793f3c45914e3": {
|
| 689 |
+
"model_module": "@jupyter-widgets/controls",
|
| 690 |
+
"model_name": "DescriptionStyleModel",
|
| 691 |
+
"model_module_version": "1.5.0",
|
| 692 |
+
"state": {
|
| 693 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 694 |
+
"_model_module_version": "1.5.0",
|
| 695 |
+
"_model_name": "DescriptionStyleModel",
|
| 696 |
+
"_view_count": null,
|
| 697 |
+
"_view_module": "@jupyter-widgets/base",
|
| 698 |
+
"_view_module_version": "1.2.0",
|
| 699 |
+
"_view_name": "StyleView",
|
| 700 |
+
"description_width": ""
|
| 701 |
+
}
|
| 702 |
+
}
|
| 703 |
+
}
|
| 704 |
+
}
|
| 705 |
+
},
|
| 706 |
+
"cells": [
|
| 707 |
+
{
|
| 708 |
+
"cell_type": "code",
|
| 709 |
+
"execution_count": 1,
|
| 710 |
+
"metadata": {
|
| 711 |
+
"colab": {
|
| 712 |
+
"base_uri": "https://localhost:8080/"
|
| 713 |
+
},
|
| 714 |
+
"id": "SRajt-tUH3ms",
|
| 715 |
+
"outputId": "f6077695-1508-4b60-b33a-7a29f37b4c75"
|
| 716 |
+
},
|
| 717 |
+
"outputs": [
|
| 718 |
+
{
|
| 719 |
+
"output_type": "stream",
|
| 720 |
+
"name": "stdout",
|
| 721 |
+
"text": [
|
| 722 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.31.0)\n",
|
| 723 |
+
"Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.14.4)\n",
|
| 724 |
+
"Requirement already satisfied: evaluate in /usr/local/lib/python3.10/dist-packages (0.4.0)\n",
|
| 725 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n",
|
| 726 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.16.4)\n",
|
| 727 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
|
| 728 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n",
|
| 729 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
|
| 730 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
|
| 731 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
|
| 732 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.13.3)\n",
|
| 733 |
+
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.3.2)\n",
|
| 734 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
|
| 735 |
+
"Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (9.0.0)\n",
|
| 736 |
+
"Requirement already satisfied: dill<0.3.8,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.7)\n",
|
| 737 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
|
| 738 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.3.0)\n",
|
| 739 |
+
"Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.15)\n",
|
| 740 |
+
"Requirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
|
| 741 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.8.5)\n",
|
| 742 |
+
"Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.18.0)\n",
|
| 743 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n",
|
| 744 |
+
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (3.2.0)\n",
|
| 745 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n",
|
| 746 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
|
| 747 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.2)\n",
|
| 748 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.0)\n",
|
| 749 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
|
| 750 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1)\n",
|
| 751 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
|
| 752 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.4)\n",
|
| 753 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.7.22)\n",
|
| 754 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
|
| 755 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3)\n",
|
| 756 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n"
|
| 757 |
+
]
|
| 758 |
+
}
|
| 759 |
+
],
|
| 760 |
+
"source": [
|
| 761 |
+
"! pip install transformers datasets evaluate"
|
| 762 |
+
]
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"cell_type": "code",
|
| 766 |
+
"source": [
|
| 767 |
+
"from transformers import AutoTokenizer\n",
|
| 768 |
+
"\n",
|
| 769 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")"
|
| 770 |
+
],
|
| 771 |
+
"metadata": {
|
| 772 |
+
"id": "rjE6lHHJJdyv"
|
| 773 |
+
},
|
| 774 |
+
"execution_count": 2,
|
| 775 |
+
"outputs": []
|
| 776 |
+
},
|
| 777 |
+
{
|
| 778 |
+
"cell_type": "code",
|
| 779 |
+
"source": [
|
| 780 |
+
"import pandas as pd\n",
|
| 781 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 782 |
+
"\n",
|
| 783 |
+
"data = pd.read_csv(\"ielts_writing_dataset_new.csv\")\n",
|
| 784 |
+
"\n",
|
| 785 |
+
"data.label = data.label.replace(1,0)\n",
|
| 786 |
+
"data.label = data.label.replace(3,0)\n",
|
| 787 |
+
"data.label = data.label.replace(3.5,0)\n",
|
| 788 |
+
"data.label = data.label.replace(4,0)\n",
|
| 789 |
+
"data.label = data.label.replace(4.5,0)\n",
|
| 790 |
+
"data.label = data.label.replace(5,0)\n",
|
| 791 |
+
"data.label = data.label.replace(5.5,1)\n",
|
| 792 |
+
"data.label = data.label.replace(6,1)\n",
|
| 793 |
+
"data.label = data.label.replace(6.5,1)\n",
|
| 794 |
+
"data.label = data.label.replace(7,1)\n",
|
| 795 |
+
"data.label = data.label.replace(7.5,1)\n",
|
| 796 |
+
"data.label = data.label.replace(8,2)\n",
|
| 797 |
+
"data.label = data.label.replace(8.5,2)\n",
|
| 798 |
+
"data.label = data.label.replace(9,2)\n",
|
| 799 |
+
"\n",
|
| 800 |
+
"data.label = data.label.astype(int)\n",
|
| 801 |
+
"\n",
|
| 802 |
+
"train, test = train_test_split(data, test_size=0.2)\n"
|
| 803 |
+
],
|
| 804 |
+
"metadata": {
|
| 805 |
+
"id": "GpD5w5t2JihL"
|
| 806 |
+
},
|
| 807 |
+
"execution_count": 3,
|
| 808 |
+
"outputs": []
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"cell_type": "code",
|
| 812 |
+
"source": [
|
| 813 |
+
"data[:10]"
|
| 814 |
+
],
|
| 815 |
+
"metadata": {
|
| 816 |
+
"colab": {
|
| 817 |
+
"base_uri": "https://localhost:8080/",
|
| 818 |
+
"height": 363
|
| 819 |
+
},
|
| 820 |
+
"id": "Cos-ypQ7n7d9",
|
| 821 |
+
"outputId": "92caed9a-43e5-4a28-adf3-1727e3a15357"
|
| 822 |
+
},
|
| 823 |
+
"execution_count": 4,
|
| 824 |
+
"outputs": [
|
| 825 |
+
{
|
| 826 |
+
"output_type": "execute_result",
|
| 827 |
+
"data": {
|
| 828 |
+
"text/plain": [
|
| 829 |
+
" label text\n",
|
| 830 |
+
"0 1 Between 1995 and 2010, a study was conducted r...\n",
|
| 831 |
+
"1 1 Poverty represents a worldwide crisis. It is t...\n",
|
| 832 |
+
"2 0 The left chart shows the population change hap...\n",
|
| 833 |
+
"3 1 Human beings are facing many challenges nowada...\n",
|
| 834 |
+
"4 1 Information about the thousands of visits from...\n",
|
| 835 |
+
"5 1 Whether countries should only invest facilitie...\n",
|
| 836 |
+
"6 1 This graph depicts the changes in tourists vis...\n",
|
| 837 |
+
"7 1 Sports is an essential part to most of us , so...\n",
|
| 838 |
+
"8 2 The line graph illustrates the number of overs...\n",
|
| 839 |
+
"9 2 International sports events require the most w..."
|
| 840 |
+
],
|
| 841 |
+
"text/html": [
|
| 842 |
+
"\n",
|
| 843 |
+
"\n",
|
| 844 |
+
" <div id=\"df-ee3fdca5-5d9d-44a1-9609-7b8c0c084882\">\n",
|
| 845 |
+
" <div class=\"colab-df-container\">\n",
|
| 846 |
+
" <div>\n",
|
| 847 |
+
"<style scoped>\n",
|
| 848 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 849 |
+
" vertical-align: middle;\n",
|
| 850 |
+
" }\n",
|
| 851 |
+
"\n",
|
| 852 |
+
" .dataframe tbody tr th {\n",
|
| 853 |
+
" vertical-align: top;\n",
|
| 854 |
+
" }\n",
|
| 855 |
+
"\n",
|
| 856 |
+
" .dataframe thead th {\n",
|
| 857 |
+
" text-align: right;\n",
|
| 858 |
+
" }\n",
|
| 859 |
+
"</style>\n",
|
| 860 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 861 |
+
" <thead>\n",
|
| 862 |
+
" <tr style=\"text-align: right;\">\n",
|
| 863 |
+
" <th></th>\n",
|
| 864 |
+
" <th>label</th>\n",
|
| 865 |
+
" <th>text</th>\n",
|
| 866 |
+
" </tr>\n",
|
| 867 |
+
" </thead>\n",
|
| 868 |
+
" <tbody>\n",
|
| 869 |
+
" <tr>\n",
|
| 870 |
+
" <th>0</th>\n",
|
| 871 |
+
" <td>1</td>\n",
|
| 872 |
+
" <td>Between 1995 and 2010, a study was conducted r...</td>\n",
|
| 873 |
+
" </tr>\n",
|
| 874 |
+
" <tr>\n",
|
| 875 |
+
" <th>1</th>\n",
|
| 876 |
+
" <td>1</td>\n",
|
| 877 |
+
" <td>Poverty represents a worldwide crisis. It is t...</td>\n",
|
| 878 |
+
" </tr>\n",
|
| 879 |
+
" <tr>\n",
|
| 880 |
+
" <th>2</th>\n",
|
| 881 |
+
" <td>0</td>\n",
|
| 882 |
+
" <td>The left chart shows the population change hap...</td>\n",
|
| 883 |
+
" </tr>\n",
|
| 884 |
+
" <tr>\n",
|
| 885 |
+
" <th>3</th>\n",
|
| 886 |
+
" <td>1</td>\n",
|
| 887 |
+
" <td>Human beings are facing many challenges nowada...</td>\n",
|
| 888 |
+
" </tr>\n",
|
| 889 |
+
" <tr>\n",
|
| 890 |
+
" <th>4</th>\n",
|
| 891 |
+
" <td>1</td>\n",
|
| 892 |
+
" <td>Information about the thousands of visits from...</td>\n",
|
| 893 |
+
" </tr>\n",
|
| 894 |
+
" <tr>\n",
|
| 895 |
+
" <th>5</th>\n",
|
| 896 |
+
" <td>1</td>\n",
|
| 897 |
+
" <td>Whether countries should only invest facilitie...</td>\n",
|
| 898 |
+
" </tr>\n",
|
| 899 |
+
" <tr>\n",
|
| 900 |
+
" <th>6</th>\n",
|
| 901 |
+
" <td>1</td>\n",
|
| 902 |
+
" <td>This graph depicts the changes in tourists vis...</td>\n",
|
| 903 |
+
" </tr>\n",
|
| 904 |
+
" <tr>\n",
|
| 905 |
+
" <th>7</th>\n",
|
| 906 |
+
" <td>1</td>\n",
|
| 907 |
+
" <td>Sports is an essential part to most of us , so...</td>\n",
|
| 908 |
+
" </tr>\n",
|
| 909 |
+
" <tr>\n",
|
| 910 |
+
" <th>8</th>\n",
|
| 911 |
+
" <td>2</td>\n",
|
| 912 |
+
" <td>The line graph illustrates the number of overs...</td>\n",
|
| 913 |
+
" </tr>\n",
|
| 914 |
+
" <tr>\n",
|
| 915 |
+
" <th>9</th>\n",
|
| 916 |
+
" <td>2</td>\n",
|
| 917 |
+
" <td>International sports events require the most w...</td>\n",
|
| 918 |
+
" </tr>\n",
|
| 919 |
+
" </tbody>\n",
|
| 920 |
+
"</table>\n",
|
| 921 |
+
"</div>\n",
|
| 922 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ee3fdca5-5d9d-44a1-9609-7b8c0c084882')\"\n",
|
| 923 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
| 924 |
+
" style=\"display:none;\">\n",
|
| 925 |
+
"\n",
|
| 926 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
| 927 |
+
" width=\"24px\">\n",
|
| 928 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
| 929 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
| 930 |
+
" </svg>\n",
|
| 931 |
+
" </button>\n",
|
| 932 |
+
"\n",
|
| 933 |
+
"\n",
|
| 934 |
+
"\n",
|
| 935 |
+
" <div id=\"df-5159f8f9-e2c4-4afd-a1ba-4432c1f027a9\">\n",
|
| 936 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-5159f8f9-e2c4-4afd-a1ba-4432c1f027a9')\"\n",
|
| 937 |
+
" title=\"Suggest charts.\"\n",
|
| 938 |
+
" style=\"display:none;\">\n",
|
| 939 |
+
"\n",
|
| 940 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
| 941 |
+
" width=\"24px\">\n",
|
| 942 |
+
" <g>\n",
|
| 943 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
| 944 |
+
" </g>\n",
|
| 945 |
+
"</svg>\n",
|
| 946 |
+
" </button>\n",
|
| 947 |
+
" </div>\n",
|
| 948 |
+
"\n",
|
| 949 |
+
"<style>\n",
|
| 950 |
+
" .colab-df-quickchart {\n",
|
| 951 |
+
" background-color: #E8F0FE;\n",
|
| 952 |
+
" border: none;\n",
|
| 953 |
+
" border-radius: 50%;\n",
|
| 954 |
+
" cursor: pointer;\n",
|
| 955 |
+
" display: none;\n",
|
| 956 |
+
" fill: #1967D2;\n",
|
| 957 |
+
" height: 32px;\n",
|
| 958 |
+
" padding: 0 0 0 0;\n",
|
| 959 |
+
" width: 32px;\n",
|
| 960 |
+
" }\n",
|
| 961 |
+
"\n",
|
| 962 |
+
" .colab-df-quickchart:hover {\n",
|
| 963 |
+
" background-color: #E2EBFA;\n",
|
| 964 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
| 965 |
+
" fill: #174EA6;\n",
|
| 966 |
+
" }\n",
|
| 967 |
+
"\n",
|
| 968 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
| 969 |
+
" background-color: #3B4455;\n",
|
| 970 |
+
" fill: #D2E3FC;\n",
|
| 971 |
+
" }\n",
|
| 972 |
+
"\n",
|
| 973 |
+
" [theme=dark] .colab-df-quickchart:hover {\n",
|
| 974 |
+
" background-color: #434B5C;\n",
|
| 975 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
| 976 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
| 977 |
+
" fill: #FFFFFF;\n",
|
| 978 |
+
" }\n",
|
| 979 |
+
"</style>\n",
|
| 980 |
+
"\n",
|
| 981 |
+
" <script>\n",
|
| 982 |
+
" async function quickchart(key) {\n",
|
| 983 |
+
" const containerElement = document.querySelector('#' + key);\n",
|
| 984 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
| 985 |
+
" 'suggestCharts', [key], {});\n",
|
| 986 |
+
" }\n",
|
| 987 |
+
" </script>\n",
|
| 988 |
+
"\n",
|
| 989 |
+
"\n",
|
| 990 |
+
" <script>\n",
|
| 991 |
+
"\n",
|
| 992 |
+
"function displayQuickchartButton(domScope) {\n",
|
| 993 |
+
" let quickchartButtonEl =\n",
|
| 994 |
+
" domScope.querySelector('#df-5159f8f9-e2c4-4afd-a1ba-4432c1f027a9 button.colab-df-quickchart');\n",
|
| 995 |
+
" quickchartButtonEl.style.display =\n",
|
| 996 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
| 997 |
+
"}\n",
|
| 998 |
+
"\n",
|
| 999 |
+
" displayQuickchartButton(document);\n",
|
| 1000 |
+
" </script>\n",
|
| 1001 |
+
" <style>\n",
|
| 1002 |
+
" .colab-df-container {\n",
|
| 1003 |
+
" display:flex;\n",
|
| 1004 |
+
" flex-wrap:wrap;\n",
|
| 1005 |
+
" gap: 12px;\n",
|
| 1006 |
+
" }\n",
|
| 1007 |
+
"\n",
|
| 1008 |
+
" .colab-df-convert {\n",
|
| 1009 |
+
" background-color: #E8F0FE;\n",
|
| 1010 |
+
" border: none;\n",
|
| 1011 |
+
" border-radius: 50%;\n",
|
| 1012 |
+
" cursor: pointer;\n",
|
| 1013 |
+
" display: none;\n",
|
| 1014 |
+
" fill: #1967D2;\n",
|
| 1015 |
+
" height: 32px;\n",
|
| 1016 |
+
" padding: 0 0 0 0;\n",
|
| 1017 |
+
" width: 32px;\n",
|
| 1018 |
+
" }\n",
|
| 1019 |
+
"\n",
|
| 1020 |
+
" .colab-df-convert:hover {\n",
|
| 1021 |
+
" background-color: #E2EBFA;\n",
|
| 1022 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
| 1023 |
+
" fill: #174EA6;\n",
|
| 1024 |
+
" }\n",
|
| 1025 |
+
"\n",
|
| 1026 |
+
" [theme=dark] .colab-df-convert {\n",
|
| 1027 |
+
" background-color: #3B4455;\n",
|
| 1028 |
+
" fill: #D2E3FC;\n",
|
| 1029 |
+
" }\n",
|
| 1030 |
+
"\n",
|
| 1031 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
| 1032 |
+
" background-color: #434B5C;\n",
|
| 1033 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
| 1034 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
| 1035 |
+
" fill: #FFFFFF;\n",
|
| 1036 |
+
" }\n",
|
| 1037 |
+
" </style>\n",
|
| 1038 |
+
"\n",
|
| 1039 |
+
" <script>\n",
|
| 1040 |
+
" const buttonEl =\n",
|
| 1041 |
+
" document.querySelector('#df-ee3fdca5-5d9d-44a1-9609-7b8c0c084882 button.colab-df-convert');\n",
|
| 1042 |
+
" buttonEl.style.display =\n",
|
| 1043 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
| 1044 |
+
"\n",
|
| 1045 |
+
" async function convertToInteractive(key) {\n",
|
| 1046 |
+
" const element = document.querySelector('#df-ee3fdca5-5d9d-44a1-9609-7b8c0c084882');\n",
|
| 1047 |
+
" const dataTable =\n",
|
| 1048 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
| 1049 |
+
" [key], {});\n",
|
| 1050 |
+
" if (!dataTable) return;\n",
|
| 1051 |
+
"\n",
|
| 1052 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
| 1053 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
| 1054 |
+
" + ' to learn more about interactive tables.';\n",
|
| 1055 |
+
" element.innerHTML = '';\n",
|
| 1056 |
+
" dataTable['output_type'] = 'display_data';\n",
|
| 1057 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
| 1058 |
+
" const docLink = document.createElement('div');\n",
|
| 1059 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
| 1060 |
+
" element.appendChild(docLink);\n",
|
| 1061 |
+
" }\n",
|
| 1062 |
+
" </script>\n",
|
| 1063 |
+
" </div>\n",
|
| 1064 |
+
" </div>\n"
|
| 1065 |
+
]
|
| 1066 |
+
},
|
| 1067 |
+
"metadata": {},
|
| 1068 |
+
"execution_count": 4
|
| 1069 |
+
}
|
| 1070 |
+
]
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"cell_type": "code",
|
| 1074 |
+
"source": [
|
| 1075 |
+
"import datasets\n",
|
| 1076 |
+
"from datasets import Dataset, DatasetDict\n",
|
| 1077 |
+
"\n",
|
| 1078 |
+
"train = Dataset.from_pandas(train)\n",
|
| 1079 |
+
"test = Dataset.from_pandas(test)\n",
|
| 1080 |
+
"\n",
|
| 1081 |
+
"\n",
|
| 1082 |
+
"dataset = DatasetDict()\n",
|
| 1083 |
+
"\n",
|
| 1084 |
+
"dataset['train'] = train\n",
|
| 1085 |
+
"dataset['test'] = test\n",
|
| 1086 |
+
"dataset = dataset.remove_columns([\"__index_level_0__\"])\n",
|
| 1087 |
+
"dataset"
|
| 1088 |
+
],
|
| 1089 |
+
"metadata": {
|
| 1090 |
+
"colab": {
|
| 1091 |
+
"base_uri": "https://localhost:8080/"
|
| 1092 |
+
},
|
| 1093 |
+
"id": "Mi7bkZ00L6ZB",
|
| 1094 |
+
"outputId": "3532f0d9-1961-44fc-ac50-bace0add6005"
|
| 1095 |
+
},
|
| 1096 |
+
"execution_count": 5,
|
| 1097 |
+
"outputs": [
|
| 1098 |
+
{
|
| 1099 |
+
"output_type": "execute_result",
|
| 1100 |
+
"data": {
|
| 1101 |
+
"text/plain": [
|
| 1102 |
+
"DatasetDict({\n",
|
| 1103 |
+
" train: Dataset({\n",
|
| 1104 |
+
" features: ['label', 'text'],\n",
|
| 1105 |
+
" num_rows: 1148\n",
|
| 1106 |
+
" })\n",
|
| 1107 |
+
" test: Dataset({\n",
|
| 1108 |
+
" features: ['label', 'text'],\n",
|
| 1109 |
+
" num_rows: 287\n",
|
| 1110 |
+
" })\n",
|
| 1111 |
+
"})"
|
| 1112 |
+
]
|
| 1113 |
+
},
|
| 1114 |
+
"metadata": {},
|
| 1115 |
+
"execution_count": 5
|
| 1116 |
+
}
|
| 1117 |
+
]
|
| 1118 |
+
},
|
| 1119 |
+
{
|
| 1120 |
+
"cell_type": "code",
|
| 1121 |
+
"source": [
|
| 1122 |
+
"dataset[\"test\"][0]"
|
| 1123 |
+
],
|
| 1124 |
+
"metadata": {
|
| 1125 |
+
"colab": {
|
| 1126 |
+
"base_uri": "https://localhost:8080/"
|
| 1127 |
+
},
|
| 1128 |
+
"id": "QGCPOgv5MO1k",
|
| 1129 |
+
"outputId": "2d26d51c-2c62-4207-b0ac-8570aa89c798"
|
| 1130 |
+
},
|
| 1131 |
+
"execution_count": 6,
|
| 1132 |
+
"outputs": [
|
| 1133 |
+
{
|
| 1134 |
+
"output_type": "execute_result",
|
| 1135 |
+
"data": {
|
| 1136 |
+
"text/plain": [
|
| 1137 |
+
"{'label': 1,\n",
|
| 1138 |
+
" 'text': 'Everything has two sides and the globalization is not exception. Our first thoughts about this topic include the process of global “McDonaldisation” and, generally speaking, spreading across the whole Globe.Firstly, I would try to concentrate on the positive aspects of globalisation. As far as economy is concerned, like the Global Bank or IMF are always focused on developing the ‘Third World’ and helping poor people to combat their life obstacles (through loans and donations). Moreover, the world becomes an area of sharing thoughts (e.g. philosophical or economical doctrines), which become popular due to lack of barriers.However, disadvantages of globalization are also widely known. Some people insist that because of this process, the spirit of countries and nations rapidly disappears. The integrity, established years ago is on the verge of collapsing. Furthermore, there’s a strong lobby of communists who , that the globalization indicates an uncontrolled reign of capitalists and slave work of lower labour-class. We should never forget about the detrimental impact of global investments on the environment – the green house effect or soar rains are triggered by globalization.To sum up, globalization has both positive and negative influence on our everyday life. I can’t agree with the popular statement that we should try to avoid being affected by it. However, we must not forget about our surroundings and local communities. They have a great value which should last forever.'}"
|
| 1139 |
+
]
|
| 1140 |
+
},
|
| 1141 |
+
"metadata": {},
|
| 1142 |
+
"execution_count": 6
|
| 1143 |
+
}
|
| 1144 |
+
]
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"cell_type": "code",
|
| 1148 |
+
"source": [
|
| 1149 |
+
"def preprocess_function(examples):\n",
|
| 1150 |
+
" return tokenizer(examples[\"text\"], truncation=True)"
|
| 1151 |
+
],
|
| 1152 |
+
"metadata": {
|
| 1153 |
+
"id": "z-Q57XYTMWsU"
|
| 1154 |
+
},
|
| 1155 |
+
"execution_count": 7,
|
| 1156 |
+
"outputs": []
|
| 1157 |
+
},
|
| 1158 |
+
{
|
| 1159 |
+
"cell_type": "code",
|
| 1160 |
+
"source": [
|
| 1161 |
+
"tokenized_dataset = dataset.map(preprocess_function, batched=True)"
|
| 1162 |
+
],
|
| 1163 |
+
"metadata": {
|
| 1164 |
+
"colab": {
|
| 1165 |
+
"base_uri": "https://localhost:8080/",
|
| 1166 |
+
"height": 81,
|
| 1167 |
+
"referenced_widgets": [
|
| 1168 |
+
"e68b6e6997844bf788a057f9c7feedfb",
|
| 1169 |
+
"295e4080ccd64e48806a36b83e50ddfa",
|
| 1170 |
+
"c4025862f06b412cb99165b67ad7daae",
|
| 1171 |
+
"5ac369dab692489cb13cdb664c47fd96",
|
| 1172 |
+
"434aa0b7bd76440d9b9b64d8b53133d3",
|
| 1173 |
+
"9e2a1fea814f408ebb4d15db83b1130b",
|
| 1174 |
+
"4a2f178864244d68bd915ee57379251d",
|
| 1175 |
+
"7125f94d482a46999fd4dd3be1b3e87e",
|
| 1176 |
+
"96486cdef9714482a4ffa2aca1b3628b",
|
| 1177 |
+
"2364eb3ce5b345788902c5f9d316a00a",
|
| 1178 |
+
"52f799ea10d4403cb18e33ba80d739d3",
|
| 1179 |
+
"3e18acb6f1504f4dace716a96e8d90f4",
|
| 1180 |
+
"953e7d76140e4ed2ade688ccd5467a75",
|
| 1181 |
+
"3a70d75b4eb949598e7cb9430acfcf81",
|
| 1182 |
+
"54719990ff1f40cb8fed06badb378d01",
|
| 1183 |
+
"5d1be2eaa2c143bbbc35f7d0f33f64de",
|
| 1184 |
+
"002c9d35efa54fccb875a08e7059997f",
|
| 1185 |
+
"21dd8d7b7e5a4e27922ff1e3bec7745a",
|
| 1186 |
+
"48abc963896a404886fbcf75b0b19bb9",
|
| 1187 |
+
"87e3a17419334bf8b2448a8914f9d721",
|
| 1188 |
+
"f8303a91b4084791971947ca45c6b459",
|
| 1189 |
+
"a878599cc49347a896c793f3c45914e3"
|
| 1190 |
+
]
|
| 1191 |
+
},
|
| 1192 |
+
"id": "0-Api6H3Mcqc",
|
| 1193 |
+
"outputId": "5fc02809-9cda-48da-9ac4-fe34f1742c22"
|
| 1194 |
+
},
|
| 1195 |
+
"execution_count": 8,
|
| 1196 |
+
"outputs": [
|
| 1197 |
+
{
|
| 1198 |
+
"output_type": "display_data",
|
| 1199 |
+
"data": {
|
| 1200 |
+
"text/plain": [
|
| 1201 |
+
"Map: 0%| | 0/1148 [00:00<?, ? examples/s]"
|
| 1202 |
+
],
|
| 1203 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 1204 |
+
"version_major": 2,
|
| 1205 |
+
"version_minor": 0,
|
| 1206 |
+
"model_id": "e68b6e6997844bf788a057f9c7feedfb"
|
| 1207 |
+
}
|
| 1208 |
+
},
|
| 1209 |
+
"metadata": {}
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"output_type": "display_data",
|
| 1213 |
+
"data": {
|
| 1214 |
+
"text/plain": [
|
| 1215 |
+
"Map: 0%| | 0/287 [00:00<?, ? examples/s]"
|
| 1216 |
+
],
|
| 1217 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 1218 |
+
"version_major": 2,
|
| 1219 |
+
"version_minor": 0,
|
| 1220 |
+
"model_id": "3e18acb6f1504f4dace716a96e8d90f4"
|
| 1221 |
+
}
|
| 1222 |
+
},
|
| 1223 |
+
"metadata": {}
|
| 1224 |
+
}
|
| 1225 |
+
]
|
| 1226 |
+
},
|
| 1227 |
+
{
|
| 1228 |
+
"cell_type": "code",
|
| 1229 |
+
"source": [
|
| 1230 |
+
"from transformers import DataCollatorWithPadding\n",
|
| 1231 |
+
"\n",
|
| 1232 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
| 1233 |
+
],
|
| 1234 |
+
"metadata": {
|
| 1235 |
+
"id": "CMgTijF_MkZ-"
|
| 1236 |
+
},
|
| 1237 |
+
"execution_count": 9,
|
| 1238 |
+
"outputs": []
|
| 1239 |
+
},
|
| 1240 |
+
{
|
| 1241 |
+
"cell_type": "code",
|
| 1242 |
+
"source": [
|
| 1243 |
+
"tokenized_dataset['train']"
|
| 1244 |
+
],
|
| 1245 |
+
"metadata": {
|
| 1246 |
+
"colab": {
|
| 1247 |
+
"base_uri": "https://localhost:8080/"
|
| 1248 |
+
},
|
| 1249 |
+
"id": "pFa_-NPcXQM3",
|
| 1250 |
+
"outputId": "c1379cbf-80ca-433e-86c8-a2a337e10b1b"
|
| 1251 |
+
},
|
| 1252 |
+
"execution_count": 10,
|
| 1253 |
+
"outputs": [
|
| 1254 |
+
{
|
| 1255 |
+
"output_type": "execute_result",
|
| 1256 |
+
"data": {
|
| 1257 |
+
"text/plain": [
|
| 1258 |
+
"Dataset({\n",
|
| 1259 |
+
" features: ['label', 'text', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
| 1260 |
+
" num_rows: 1148\n",
|
| 1261 |
+
"})"
|
| 1262 |
+
]
|
| 1263 |
+
},
|
| 1264 |
+
"metadata": {},
|
| 1265 |
+
"execution_count": 10
|
| 1266 |
+
}
|
| 1267 |
+
]
|
| 1268 |
+
},
|
| 1269 |
+
{
|
| 1270 |
+
"cell_type": "code",
|
| 1271 |
+
"source": [
|
| 1272 |
+
"import evaluate\n",
|
| 1273 |
+
"\n",
|
| 1274 |
+
"accuracy = evaluate.load(\"accuracy\")"
|
| 1275 |
+
],
|
| 1276 |
+
"metadata": {
|
| 1277 |
+
"id": "zHjByQbVMobe"
|
| 1278 |
+
},
|
| 1279 |
+
"execution_count": 11,
|
| 1280 |
+
"outputs": []
|
| 1281 |
+
},
|
| 1282 |
+
{
|
| 1283 |
+
"cell_type": "code",
|
| 1284 |
+
"source": [
|
| 1285 |
+
"import numpy as np\n",
|
| 1286 |
+
"\n",
|
| 1287 |
+
"\n",
|
| 1288 |
+
"def compute_metrics(eval_pred):\n",
|
| 1289 |
+
" predictions, labels = eval_pred\n",
|
| 1290 |
+
" predictions = np.argmax(predictions, axis=1)\n",
|
| 1291 |
+
" return accuracy.compute(predictions=predictions, references=labels)"
|
| 1292 |
+
],
|
| 1293 |
+
"metadata": {
|
| 1294 |
+
"id": "GQJysWFsMsyR"
|
| 1295 |
+
},
|
| 1296 |
+
"execution_count": 12,
|
| 1297 |
+
"outputs": []
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"cell_type": "code",
|
| 1301 |
+
"source": [
|
| 1302 |
+
"# id2label = {0: '1', 1:'3', 2:'3.5', 3:'4', 4:'4.5',5:'5', 6:'5.5', 7:'6', 8:'6.5',9:'7',10:'7.5',11:'8',12:'8.5',13:'9'}\n",
|
| 1303 |
+
"# label2id = {'1':0,'3':1,'3.5':2,'4':3,'4.5':4,'5':5,'5.5':6,'6':7,'6.5':8,'7':9,'7.5':10,'8':11,'8.5':12,'9':13}\n",
|
| 1304 |
+
"id2label = {0:\"Bad\",1:\"Acceptable\",2:\"Excellent\"}\n",
|
| 1305 |
+
"label2id = {\"Bad\":0,\"Acceptable\":1,\"Excellent\":2}\n",
|
| 1306 |
+
"\n"
|
| 1307 |
+
],
|
| 1308 |
+
"metadata": {
|
| 1309 |
+
"id": "HgDWrzrvMvDW"
|
| 1310 |
+
},
|
| 1311 |
+
"execution_count": 13,
|
| 1312 |
+
"outputs": []
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"cell_type": "code",
|
| 1316 |
+
"source": [
|
| 1317 |
+
"from transformers import BertForSequenceClassification, TrainingArguments, Trainer\n",
|
| 1318 |
+
"\n",
|
| 1319 |
+
"model = BertForSequenceClassification.from_pretrained(\n",
|
| 1320 |
+
" \"bert-base-uncased\",num_labels=3, id2label=id2label, label2id=label2id,\n",
|
| 1321 |
+
")"
|
| 1322 |
+
],
|
| 1323 |
+
"metadata": {
|
| 1324 |
+
"colab": {
|
| 1325 |
+
"base_uri": "https://localhost:8080/"
|
| 1326 |
+
},
|
| 1327 |
+
"id": "7xaZqPOzOVJP",
|
| 1328 |
+
"outputId": "199584fb-36b3-4906-c3ac-614f9b38950e"
|
| 1329 |
+
},
|
| 1330 |
+
"execution_count": 14,
|
| 1331 |
+
"outputs": [
|
| 1332 |
+
{
|
| 1333 |
+
"output_type": "stream",
|
| 1334 |
+
"name": "stderr",
|
| 1335 |
+
"text": [
|
| 1336 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 1337 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 1338 |
+
]
|
| 1339 |
+
}
|
| 1340 |
+
]
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"cell_type": "code",
|
| 1344 |
+
"source": [
|
| 1345 |
+
"! pip install transformers[torch]"
|
| 1346 |
+
],
|
| 1347 |
+
"metadata": {
|
| 1348 |
+
"colab": {
|
| 1349 |
+
"base_uri": "https://localhost:8080/"
|
| 1350 |
+
},
|
| 1351 |
+
"id": "s7bor4hUOq4q",
|
| 1352 |
+
"outputId": "632f838a-b986-43e4-d901-4d5398912fb6"
|
| 1353 |
+
},
|
| 1354 |
+
"execution_count": 15,
|
| 1355 |
+
"outputs": [
|
| 1356 |
+
{
|
| 1357 |
+
"output_type": "stream",
|
| 1358 |
+
"name": "stdout",
|
| 1359 |
+
"text": [
|
| 1360 |
+
"Requirement already satisfied: transformers[torch] in /usr/local/lib/python3.10/dist-packages (4.31.0)\n",
|
| 1361 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (3.12.2)\n",
|
| 1362 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (0.16.4)\n",
|
| 1363 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (1.23.5)\n",
|
| 1364 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (23.1)\n",
|
| 1365 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (6.0.1)\n",
|
| 1366 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2023.6.3)\n",
|
| 1367 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2.31.0)\n",
|
| 1368 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (0.13.3)\n",
|
| 1369 |
+
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (0.3.2)\n",
|
| 1370 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (4.66.1)\n",
|
| 1371 |
+
"Requirement already satisfied: torch!=1.12.0,>=1.9 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2.0.1+cu118)\n",
|
| 1372 |
+
"Requirement already satisfied: accelerate>=0.20.3 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (0.21.0)\n",
|
| 1373 |
+
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.3->transformers[torch]) (5.9.5)\n",
|
| 1374 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers[torch]) (2023.6.0)\n",
|
| 1375 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers[torch]) (4.7.1)\n",
|
| 1376 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (1.12)\n",
|
| 1377 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (3.1)\n",
|
| 1378 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (3.1.2)\n",
|
| 1379 |
+
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (2.0.0)\n",
|
| 1380 |
+
"Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.9->transformers[torch]) (3.27.2)\n",
|
| 1381 |
+
"Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.9->transformers[torch]) (16.0.6)\n",
|
| 1382 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (3.2.0)\n",
|
| 1383 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (3.4)\n",
|
| 1384 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (2.0.4)\n",
|
| 1385 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (2023.7.22)\n",
|
| 1386 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch!=1.12.0,>=1.9->transformers[torch]) (2.1.3)\n",
|
| 1387 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.12.0,>=1.9->transformers[torch]) (1.3.0)\n"
|
| 1388 |
+
]
|
| 1389 |
+
}
|
| 1390 |
+
]
|
| 1391 |
+
},
|
| 1392 |
+
{
|
| 1393 |
+
"cell_type": "code",
|
| 1394 |
+
"source": [
|
| 1395 |
+
"from torch import nn\n",
|
| 1396 |
+
"\n",
|
| 1397 |
+
"class ClassificationTrainer(Trainer):\n",
|
| 1398 |
+
" def compute_loss(self, model, inputs, return_outputs=False):\n",
|
| 1399 |
+
" labels = inputs.get(\"label\")\n",
|
| 1400 |
+
" outputs = model(**inputs)\n",
|
| 1401 |
+
" outputs = outputs.unsqueeze(1)\n",
|
| 1402 |
+
" logits = outputs.get('logits')\n",
|
| 1403 |
+
" loss_fct = nn.CrossEntropyLoss()\n",
|
| 1404 |
+
" loss = loss_fct(logits.squeeze(), labels.squeeze())\n",
|
| 1405 |
+
" return (loss, outputs) if return_outputs else loss"
|
| 1406 |
+
],
|
| 1407 |
+
"metadata": {
|
| 1408 |
+
"id": "KQ2UskBkU4D9"
|
| 1409 |
+
},
|
| 1410 |
+
"execution_count": 16,
|
| 1411 |
+
"outputs": []
|
| 1412 |
+
},
|
| 1413 |
+
{
|
| 1414 |
+
"cell_type": "code",
|
| 1415 |
+
"source": [
|
| 1416 |
+
"training_args = TrainingArguments(\n",
|
| 1417 |
+
" output_dir=\"essayl0\",\n",
|
| 1418 |
+
" learning_rate=2e-5,\n",
|
| 1419 |
+
" per_device_train_batch_size=16,\n",
|
| 1420 |
+
" per_device_eval_batch_size=16,\n",
|
| 1421 |
+
" num_train_epochs=15,\n",
|
| 1422 |
+
" weight_decay=0.01,\n",
|
| 1423 |
+
" evaluation_strategy=\"epoch\",\n",
|
| 1424 |
+
" save_strategy=\"epoch\",\n",
|
| 1425 |
+
" load_best_model_at_end=True,\n",
|
| 1426 |
+
")\n",
|
| 1427 |
+
"\n",
|
| 1428 |
+
"trainer = Trainer(\n",
|
| 1429 |
+
" model=model,\n",
|
| 1430 |
+
" args=training_args,\n",
|
| 1431 |
+
" train_dataset=tokenized_dataset[\"train\"],\n",
|
| 1432 |
+
" eval_dataset=tokenized_dataset[\"test\"],\n",
|
| 1433 |
+
" tokenizer=tokenizer,\n",
|
| 1434 |
+
" data_collator=data_collator,\n",
|
| 1435 |
+
" compute_metrics=compute_metrics,\n",
|
| 1436 |
+
")\n",
|
| 1437 |
+
"\n",
|
| 1438 |
+
"trainer.train()"
|
| 1439 |
+
],
|
| 1440 |
+
"metadata": {
|
| 1441 |
+
"colab": {
|
| 1442 |
+
"base_uri": "https://localhost:8080/",
|
| 1443 |
+
"height": 656
|
| 1444 |
+
},
|
| 1445 |
+
"id": "BwyTlAy0OdRS",
|
| 1446 |
+
"outputId": "dca2b59c-a8d7-40fb-ded3-d0a3685949d7"
|
| 1447 |
+
},
|
| 1448 |
+
"execution_count": 17,
|
| 1449 |
+
"outputs": [
|
| 1450 |
+
{
|
| 1451 |
+
"output_type": "stream",
|
| 1452 |
+
"name": "stderr",
|
| 1453 |
+
"text": [
|
| 1454 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
| 1455 |
+
" warnings.warn(\n",
|
| 1456 |
+
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
|
| 1457 |
+
]
|
| 1458 |
+
},
|
| 1459 |
+
{
|
| 1460 |
+
"output_type": "display_data",
|
| 1461 |
+
"data": {
|
| 1462 |
+
"text/plain": [
|
| 1463 |
+
"<IPython.core.display.HTML object>"
|
| 1464 |
+
],
|
| 1465 |
+
"text/html": [
|
| 1466 |
+
"\n",
|
| 1467 |
+
" <div>\n",
|
| 1468 |
+
" \n",
|
| 1469 |
+
" <progress value='1080' max='1080' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1470 |
+
" [1080/1080 29:09, Epoch 15/15]\n",
|
| 1471 |
+
" </div>\n",
|
| 1472 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 1473 |
+
" <thead>\n",
|
| 1474 |
+
" <tr style=\"text-align: left;\">\n",
|
| 1475 |
+
" <th>Epoch</th>\n",
|
| 1476 |
+
" <th>Training Loss</th>\n",
|
| 1477 |
+
" <th>Validation Loss</th>\n",
|
| 1478 |
+
" <th>Accuracy</th>\n",
|
| 1479 |
+
" </tr>\n",
|
| 1480 |
+
" </thead>\n",
|
| 1481 |
+
" <tbody>\n",
|
| 1482 |
+
" <tr>\n",
|
| 1483 |
+
" <td>1</td>\n",
|
| 1484 |
+
" <td>No log</td>\n",
|
| 1485 |
+
" <td>0.601437</td>\n",
|
| 1486 |
+
" <td>0.752613</td>\n",
|
| 1487 |
+
" </tr>\n",
|
| 1488 |
+
" <tr>\n",
|
| 1489 |
+
" <td>2</td>\n",
|
| 1490 |
+
" <td>No log</td>\n",
|
| 1491 |
+
" <td>0.444218</td>\n",
|
| 1492 |
+
" <td>0.860627</td>\n",
|
| 1493 |
+
" </tr>\n",
|
| 1494 |
+
" <tr>\n",
|
| 1495 |
+
" <td>3</td>\n",
|
| 1496 |
+
" <td>No log</td>\n",
|
| 1497 |
+
" <td>0.510611</td>\n",
|
| 1498 |
+
" <td>0.815331</td>\n",
|
| 1499 |
+
" </tr>\n",
|
| 1500 |
+
" <tr>\n",
|
| 1501 |
+
" <td>4</td>\n",
|
| 1502 |
+
" <td>No log</td>\n",
|
| 1503 |
+
" <td>0.723215</td>\n",
|
| 1504 |
+
" <td>0.766551</td>\n",
|
| 1505 |
+
" </tr>\n",
|
| 1506 |
+
" <tr>\n",
|
| 1507 |
+
" <td>5</td>\n",
|
| 1508 |
+
" <td>No log</td>\n",
|
| 1509 |
+
" <td>0.556284</td>\n",
|
| 1510 |
+
" <td>0.850174</td>\n",
|
| 1511 |
+
" </tr>\n",
|
| 1512 |
+
" <tr>\n",
|
| 1513 |
+
" <td>6</td>\n",
|
| 1514 |
+
" <td>No log</td>\n",
|
| 1515 |
+
" <td>0.783423</td>\n",
|
| 1516 |
+
" <td>0.794425</td>\n",
|
| 1517 |
+
" </tr>\n",
|
| 1518 |
+
" <tr>\n",
|
| 1519 |
+
" <td>7</td>\n",
|
| 1520 |
+
" <td>0.275800</td>\n",
|
| 1521 |
+
" <td>0.735923</td>\n",
|
| 1522 |
+
" <td>0.850174</td>\n",
|
| 1523 |
+
" </tr>\n",
|
| 1524 |
+
" <tr>\n",
|
| 1525 |
+
" <td>8</td>\n",
|
| 1526 |
+
" <td>0.275800</td>\n",
|
| 1527 |
+
" <td>0.654791</td>\n",
|
| 1528 |
+
" <td>0.878049</td>\n",
|
| 1529 |
+
" </tr>\n",
|
| 1530 |
+
" <tr>\n",
|
| 1531 |
+
" <td>9</td>\n",
|
| 1532 |
+
" <td>0.275800</td>\n",
|
| 1533 |
+
" <td>0.633503</td>\n",
|
| 1534 |
+
" <td>0.888502</td>\n",
|
| 1535 |
+
" </tr>\n",
|
| 1536 |
+
" <tr>\n",
|
| 1537 |
+
" <td>10</td>\n",
|
| 1538 |
+
" <td>0.275800</td>\n",
|
| 1539 |
+
" <td>1.105006</td>\n",
|
| 1540 |
+
" <td>0.783972</td>\n",
|
| 1541 |
+
" </tr>\n",
|
| 1542 |
+
" <tr>\n",
|
| 1543 |
+
" <td>11</td>\n",
|
| 1544 |
+
" <td>0.275800</td>\n",
|
| 1545 |
+
" <td>0.710119</td>\n",
|
| 1546 |
+
" <td>0.878049</td>\n",
|
| 1547 |
+
" </tr>\n",
|
| 1548 |
+
" <tr>\n",
|
| 1549 |
+
" <td>12</td>\n",
|
| 1550 |
+
" <td>0.275800</td>\n",
|
| 1551 |
+
" <td>0.792314</td>\n",
|
| 1552 |
+
" <td>0.839721</td>\n",
|
| 1553 |
+
" </tr>\n",
|
| 1554 |
+
" <tr>\n",
|
| 1555 |
+
" <td>13</td>\n",
|
| 1556 |
+
" <td>0.275800</td>\n",
|
| 1557 |
+
" <td>0.863435</td>\n",
|
| 1558 |
+
" <td>0.843206</td>\n",
|
| 1559 |
+
" </tr>\n",
|
| 1560 |
+
" <tr>\n",
|
| 1561 |
+
" <td>14</td>\n",
|
| 1562 |
+
" <td>0.018500</td>\n",
|
| 1563 |
+
" <td>0.834555</td>\n",
|
| 1564 |
+
" <td>0.843206</td>\n",
|
| 1565 |
+
" </tr>\n",
|
| 1566 |
+
" <tr>\n",
|
| 1567 |
+
" <td>15</td>\n",
|
| 1568 |
+
" <td>0.018500</td>\n",
|
| 1569 |
+
" <td>0.864810</td>\n",
|
| 1570 |
+
" <td>0.832753</td>\n",
|
| 1571 |
+
" </tr>\n",
|
| 1572 |
+
" </tbody>\n",
|
| 1573 |
+
"</table><p>"
|
| 1574 |
+
]
|
| 1575 |
+
},
|
| 1576 |
+
"metadata": {}
|
| 1577 |
+
},
|
| 1578 |
+
{
|
| 1579 |
+
"output_type": "execute_result",
|
| 1580 |
+
"data": {
|
| 1581 |
+
"text/plain": [
|
| 1582 |
+
"TrainOutput(global_step=1080, training_loss=0.13700703542541576, metrics={'train_runtime': 1752.9066, 'train_samples_per_second': 9.824, 'train_steps_per_second': 0.616, 'total_flos': 4194210824632584.0, 'train_loss': 0.13700703542541576, 'epoch': 15.0})"
|
| 1583 |
+
]
|
| 1584 |
+
},
|
| 1585 |
+
"metadata": {},
|
| 1586 |
+
"execution_count": 17
|
| 1587 |
+
}
|
| 1588 |
+
]
|
| 1589 |
+
},
|
| 1590 |
+
{
|
| 1591 |
+
"cell_type": "code",
|
| 1592 |
+
"source": [
|
| 1593 |
+
"!zip -r /content/checkpoint.zip /content/essayl0/checkpoint-1080/"
|
| 1594 |
+
],
|
| 1595 |
+
"metadata": {
|
| 1596 |
+
"colab": {
|
| 1597 |
+
"base_uri": "https://localhost:8080/"
|
| 1598 |
+
},
|
| 1599 |
+
"id": "s6wG4purBmfX",
|
| 1600 |
+
"outputId": "3363587c-a6e3-4a40-db80-73d6eaf26cf7"
|
| 1601 |
+
},
|
| 1602 |
+
"execution_count": 18,
|
| 1603 |
+
"outputs": [
|
| 1604 |
+
{
|
| 1605 |
+
"output_type": "stream",
|
| 1606 |
+
"name": "stdout",
|
| 1607 |
+
"text": [
|
| 1608 |
+
" adding: content/essayl0/checkpoint-1080/ (stored 0%)\n",
|
| 1609 |
+
" adding: content/essayl0/checkpoint-1080/special_tokens_map.json (deflated 42%)\n",
|
| 1610 |
+
" adding: content/essayl0/checkpoint-1080/rng_state.pth (deflated 28%)\n",
|
| 1611 |
+
" adding: content/essayl0/checkpoint-1080/vocab.txt (deflated 53%)\n",
|
| 1612 |
+
" adding: content/essayl0/checkpoint-1080/tokenizer.json (deflated 71%)\n",
|
| 1613 |
+
" adding: content/essayl0/checkpoint-1080/config.json (deflated 50%)\n",
|
| 1614 |
+
" adding: content/essayl0/checkpoint-1080/trainer_state.json (deflated 78%)\n",
|
| 1615 |
+
" adding: content/essayl0/checkpoint-1080/pytorch_model.bin (deflated 7%)\n",
|
| 1616 |
+
" adding: content/essayl0/checkpoint-1080/optimizer.pt (deflated 21%)\n",
|
| 1617 |
+
" adding: content/essayl0/checkpoint-1080/training_args.bin (deflated 48%)\n",
|
| 1618 |
+
" adding: content/essayl0/checkpoint-1080/tokenizer_config.json (deflated 43%)\n",
|
| 1619 |
+
" adding: content/essayl0/checkpoint-1080/scheduler.pt (deflated 49%)\n"
|
| 1620 |
+
]
|
| 1621 |
+
}
|
| 1622 |
+
]
|
| 1623 |
+
}
|
| 1624 |
+
]
|
| 1625 |
+
}
|