Spaces:
No application file
No application file
File size: 8,326 Bytes
0a0cd77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import streamlit as st
import numpy as np
import plotly.express as px
import pandas as pd
import plotly.graph_objects as go
st.set_page_config(page_title="Plotly Graphing Libraries",layout='wide')
import streamlit as st
uploaded_files = st.file_uploader("Choose a CSV file", accept_multiple_files=True)
for uploaded_file in uploaded_files:
bytes_data = uploaded_file.read()
st.write("filename:", uploaded_file.name)
st.write(bytes_data)
if st.checkbox("FileDetails"):
filevalue = uploaded_file.getvalue()
st.write(filevalue)
st.write(uploaded_file.name)
st.write(uploaded_file.type)
st.write(uploaded_file.size)
#st.write(uploaded_file.last_modified)
#st.write(uploaded_file.charset)
st.write(uploaded_file.getbuffer())
st.write(uploaded_file.getbuffer().nbytes)
st.write(uploaded_file.getbuffer().tobytes())
st.write(uploaded_file.getbuffer().tolist())
st.write(uploaded_file.getbuffer().itemsize)
st.write(uploaded_file.getbuffer().ndim)
st.write(uploaded_file.getbuffer().shape)
st.write(uploaded_file.getbuffer().strides)
st.write(uploaded_file.getbuffer().suboffsets)
st.write(uploaded_file.getbuffer().readonly)
st.write(uploaded_file.getbuffer().c_contiguous)
st.write(uploaded_file.getbuffer().f_contiguous)
st.write(uploaded_file.getbuffer().contiguous)
st.write(uploaded_file.getbuffer().itemsize)
st.write(uploaded_file.getbuffer().nbytes)
st.write(uploaded_file.getbuffer().ndim)
st.write(uploaded_file.getbuffer().shape)
st.write(uploaded_file.getbuffer().strides)
st.write(uploaded_file.getbuffer().suboffsets)
st.write(uploaded_file.getbuffer().readonly)
st.write(uploaded_file.getbuffer().c_contiguous)
st.write(uploaded_file.getbuffer().f_contiguous)
st.write(uploaded_file.getbuffer().contiguous)
st.write(uploaded_file.getbuffer().itemsize)
st.write(uploaded_file.getbuffer().nbytes)
st.write(uploaded_file.getbuffer().ndim)
st.write(uploaded_file.getbuffer().shape)
st.write(uploaded_file.getbuffer().strides)
st.write(uploaded_file.getbuffer().suboffsets)
st.write(uploaded_file.getbuffer().readonly)
st.write(uploaded_file.getbuffer().c_contiguous)
st.write(uploaded_file.getbuffer().f_contiguous)
myDF = pd.DataFrame(uploaded_file.getbuffer().tolist())
st.markdown("# Treemaps from upload data file: https://plotly.com/python/treemaps/")
#df = myDF.query("year == 2007")
df = myDF
fig = px.treemap(df, path=[px.Constant("time"), 'message', 'name'], values='content',
color='lifeExp', hover_data=['iso_alpha'],
color_continuous_scale='RdBu',
color_continuous_midpoint=np.average(df['name'], weights=df['content'])) # todo - debug this and get it working with the data
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
#fig.show()
st.plotly_chart(fig, use_container_width=True)
#show replace
if st.checkbox("replace"):
mydf = st.dataframe(df)
columns = st.selectbox("Select column", df.columns)
old_values = st.multiselect("Current Values",list(df[columns].unique()),list(df[columns].unique()))
with st.form(key='my_form'):
col1,col2 = st.beta_columns(2)
st_input = st.number_input if is_numeric_dtype(df[columns]) else st.text_input
with col1:
old_val = st_input("old value")
with col2:
new_val = st_input("new value")
if st.form_submit_button("Replace"):
df[columns]=df[columns].replace(old_val,new_val)
st.success("{} replace with {} successfully ".format(old_val,new_val))
excel = df.to_excel(r"F:\book2.xlsx", index = False, header=True,encoding="utf-8")
df =pd.read_excel(r"F:\book2.xlsx")
mydf.add_rows(df)
st.markdown("WebGL Rendering with 1,000,000 Points")
import plotly.graph_objects as go
import numpy as np
N = 1000000
fig = go.Figure()
fig.add_trace(
go.Scattergl(
x = np.random.randn(N),
y = np.random.randn(N),
mode = 'markers',
marker = dict(
line = dict(
width = 1,
color = 'DarkSlateGrey')
)
)
)
#fig.show()
st.plotly_chart(fig, use_container_width=True)
st.markdown("# WebGL Graph - ScatterGL")
fig = go.Figure()
trace_num = 10
point_num = 5000
for i in range(trace_num):
fig.add_trace(
go.Scattergl(
x = np.linspace(0, 1, point_num),
y = np.random.randn(point_num)+(i*5)
)
)
fig.update_layout(showlegend=False)
#fig.show()
st.plotly_chart(fig, use_container_width=True)
st.markdown("# Treemaps: https://plotly.com/python/treemaps/")
df = px.data.gapminder().query("year == 2007")
fig = px.treemap(df, path=[px.Constant("world"), 'continent', 'country'], values='pop',
color='lifeExp', hover_data=['iso_alpha'],
color_continuous_scale='RdBu',
color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
#fig.show()
st.plotly_chart(fig, use_container_width=True)
st.markdown("# Sunburst: https://plotly.com/python/sunburst-charts/")
st.markdown("# Life Expectancy Sunburst")
df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'], values='pop',
color='lifeExp', hover_data=['iso_alpha'],
color_continuous_scale='RdBu',
color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
st.plotly_chart(fig, use_container_width=True)
st.markdown("# Coffee Aromas and Tastes Sunburst")
df1 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv')
df2 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv')
fig = go.Figure()
fig.add_trace(go.Sunburst(
ids=df1.ids,
labels=df1.labels,
parents=df1.parents,
domain=dict(column=0)
))
fig.add_trace(go.Sunburst(
ids=df2.ids,
labels=df2.labels,
parents=df2.parents,
domain=dict(column=1),
maxdepth=2
))
fig.update_layout(
grid= dict(columns=2, rows=1),
margin = dict(t=0, l=0, r=0, b=0)
)
st.plotly_chart(fig, use_container_width=True)
# Sunburst
#data = dict(
# character=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
# parent=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
# value=[10, 14, 12, 10, 2, 6, 6, 4, 4])
#fig = px.sunburst(
# data,
# names='character',
# parents='parent',
# values='value',
#)
#fig.show()
#st.plotly_chart(fig, use_container_width=True)
df = px.data.tips()
fig = px.treemap(df, path=[px.Constant("all"), 'sex', 'day', 'time'],
values='total_bill', color='time',
color_discrete_map={'(?)':'lightgrey', 'Lunch':'gold', 'Dinner':'darkblue'})
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
#fig.show()
fig.update_traces(marker=dict(cornerradius=5))
st.plotly_chart(fig, use_container_width=True)
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(go.Treemap(
ids = df.ids,
labels = df.labels,
parents = df.parents,
pathbar_textfont_size=15,
root_color="lightgrey"
))
fig.update_layout(
uniformtext=dict(minsize=10, mode='hide'),
margin = dict(t=50, l=25, r=25, b=25)
)
#fig.show()
st.plotly_chart(fig, use_container_width=True)
df = pd.read_pickle('bloom_dataset.pkl')
fig = px.treemap(df, path=[px.Constant("ROOTS"), 'Macroarea', 'Family', 'Genus', 'Language', 'dataset_name'],
values='num_bytes', maxdepth=4)
fig.update_traces(root_color="pink")
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig, use_container_width=True) |