Spaces:
Sleeping
Sleeping
File size: 35,273 Bytes
7782338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
# # app/core/vectorizer.py
# from pathlib import Path
# from typing import Dict
# def vectorize_image(input_raster_path: Path, output_svg_path: Path, options: Dict = None) -> Dict:
# """
# Simple, safe vectorizer stub.
# - Writes a minimal SVG to output_svg_path.
# - You should replace with your real vectorizer (potrace, autotrace, model, etc.)
# Returns: {"success": True, "svg_path": str(output_svg_path)} or {"success": False, "error": "..."}
# """
# options = options or {}
# try:
# input_raster_path = Path(input_raster_path)
# output_svg_path = Path(output_svg_path)
# output_svg_path.parent.mkdir(parents=True, exist_ok=True)
# if not input_raster_path.exists():
# return {"success": False, "error": "input-missing"}
# # Placeholder SVG (safe). Replace with actual vector output.
# sample_svg = f"""<svg xmlns="http://www.w3.org/2000/svg" width="600" height="200">
# <rect width="100%" height="100%" fill="transparent"/>
# <text x="10" y="40" font-family="Arial" font-size="28">Vector placeholder for {input_raster_path.name}</text>
# </svg>"""
# output_svg_path.write_text(sample_svg, encoding="utf-8")
# return {"success": True, "svg_path": str(output_svg_path)}
# except Exception as e:
# return {"success": False, "error": str(e)}
# from pathlib import Path
# from typing import Dict, Optional
# import cv2
# import numpy as np
# def vectorize_image(input_raster_path: Path, output_svg_path: Path = None, options: Optional[Dict] = None) -> Dict:
# """
# Production-ready in-memory vectorizer.
# Converts raster (PNG/JPG) β SVG (string, not saved).
# Args:
# input_raster_path (Path): Path to input raster image.
# output_svg_path (Path, optional): Ignored here, kept for compatibility.
# options (dict, optional): {
# "threshold": int (default=127),
# "simplify_tolerance": float (default=1.5),
# "quality": str (e.g., "low", "medium", "high") - optional
# }
# Returns:
# dict: {"success": True, "svg": "<svg>...</svg>", "width": w, "height": h}
# or {"success": False, "error": "..."}
# """
# options = options or {}
# threshold_value = options.get("threshold", 127)
# simplify_tolerance = options.get("simplify_tolerance", 1.5)
# try:
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "input file not found"}
# # ---- Load image ----
# img = cv2.imread(str(input_raster_path))
# if img is None:
# return {"success": False, "error": "invalid or unreadable image"}
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# _, thresh = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY_INV)
# # ---- Find contours ----
# contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# h, w = gray.shape[:2]
# # ---- Build SVG in-memory ----
# svg_header = f'<svg xmlns="http://www.w3.org/2000/svg" width="{w}" height="{h}" viewBox="0 0 {w} {h}">'
# svg_paths = []
# for contour in contours:
# contour = cv2.approxPolyDP(contour, simplify_tolerance, True)
# if contour.shape[0] < 2:
# continue
# path_data = "M " + " L ".join(f"{int(x)} {int(y)}" for x, y in contour[:, 0, :]) + " Z"
# svg_paths.append(f'<path d="{path_data}" fill="none" stroke="black" stroke-width="1"/>')
# svg_content = svg_header + "".join(svg_paths) + "</svg>"
# # ---- Return result ----
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# except Exception as e:
# return {"success": False, "error": str(e)}
# from pathlib import Path
# from typing import Dict, Optional
# import cv2
# import numpy as np
# def vectorize_image(input_raster_path: Path, output_svg_path: Path = None, options: Optional[Dict] = None) -> Dict:
# """
# Production-ready in-memory vectorizer.
# Converts raster (PNG/JPG) β SVG (string, not saved).
# Args:
# input_raster_path (Path): Path to input raster image.
# output_svg_path (Path, optional): Ignored here, kept for compatibility.
# options (dict, optional): {
# "threshold": int (default=127),
# "simplify_tolerance": float (default=1.5),
# "quality": str (e.g., "low", "medium", "high") - optional
# }
# Returns:
# dict: {"success": True, "svg": "<svg>...</svg>", "width": w, "height": h}
# or {"success": False, "error": "..."}
# """
# print("\n[DEBUG] π§© Starting vectorize_image()...")
# print(f"[DEBUG] Input raster path: {input_raster_path}")
# print(f"[DEBUG] Output SVG path (if any): {output_svg_path}")
# print(f"[DEBUG] Options: {options}")
# options = options or {}
# threshold_value = options.get("threshold", 127)
# simplify_tolerance = options.get("simplify_tolerance", 1.5)
# print(f"[DEBUG] Using threshold={threshold_value}, simplify_tolerance={simplify_tolerance}")
# try:
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# print("[ERROR] β Input file not found.")
# return {"success": False, "error": "input file not found"}
# # ---- Load image ----
# img = cv2.imread(str(input_raster_path))
# if img is None:
# print("[ERROR] β Invalid or unreadable image.")
# return {"success": False, "error": "invalid or unreadable image"}
# print(f"[DEBUG] Image loaded successfully. Shape: {img.shape}")
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# print("[DEBUG] Converted image to grayscale.")
# _, thresh = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY_INV)
# print("[DEBUG] Applied thresholding to generate binary image.")
# # ---- Find contours ----
# contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# h, w = gray.shape[:2]
# print(f"[DEBUG] Found {len(contours)} contours. Image size: {w}x{h}")
# # ---- Build SVG in-memory ----
# svg_header = f'<svg xmlns="http://www.w3.org/2000/svg" width="{w}" height="{h}" viewBox="0 0 {w} {h}">'
# svg_paths = []
# for i, contour in enumerate(contours):
# contour = cv2.approxPolyDP(contour, simplify_tolerance, True)
# if contour.shape[0] < 2:
# print(f"[DEBUG] Skipping small contour #{i} (too few points).")
# continue
# path_data = "M " + " L ".join(f"{int(x)} {int(y)}" for x, y in contour[:, 0, :]) + " Z"
# svg_paths.append(f'<path d="{path_data}" fill="none" stroke="black" stroke-width="1"/>')
# print(f"[DEBUG] Added contour #{i} with {contour.shape[0]} points to SVG.")
# svg_content = svg_header + "".join(svg_paths) + "</svg>"
# print("[DEBUG] SVG generation completed successfully.")
# print(f"[DEBUG] Total paths in SVG: {len(svg_paths)}")
# # ---- Return result ----
# print("[SUCCESS] β
Vectorization completed.")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# except Exception as e:
# print(f"[ERROR] β Exception in vectorize_image(): {e}")
# return {"success": False, "error": str(e)}
from pathlib import Path
from typing import Dict, Optional
import cv2
import numpy as np
# def vectorize_image(input_raster_path: Path, output_svg_path: Path = None, options: Optional[Dict] = None) -> Dict:
# """
# Converts a raster (PNG/JPG) into a backgroundless SVG that represents visible shapes.
# Supports transparency, soft edges, and grayscale drawings.
# """
# print("\n[DEBUG] π§© Starting vectorize_image()...")
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "input file not found"}
# options = options or {}
# threshold_value = options.get("threshold", 180)
# simplify_tolerance = options.get("simplify_tolerance", 2.0)
# stroke_color = options.get("stroke_color", "black")
# print(f"[DEBUG] Reading image: {input_raster_path}")
# img = cv2.imread(str(input_raster_path), cv2.IMREAD_UNCHANGED)
# if img is None:
# return {"success": False, "error": "cannot read image"}
# h, w = img.shape[:2]
# print(f"[DEBUG] Image shape: {w}x{h}")
# # ---- Handle alpha channel for transparency ----
# if img.shape[2] == 4:
# b, g, r, a = cv2.split(img)
# alpha_mask = a
# print("[DEBUG] Image has alpha channel (transparency detected).")
# else:
# b, g, r = cv2.split(img)
# alpha_mask = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# print("[DEBUG] No alpha channel, using grayscale as mask.")
# # Invert alpha if background is white
# mean_val = np.mean(alpha_mask)
# if mean_val > 200:
# alpha_mask = 255 - alpha_mask
# print("[DEBUG] Inverted mask since background seemed white.")
# # ---- Threshold to get visible content ----
# _, binary = cv2.threshold(alpha_mask, threshold_value, 255, cv2.THRESH_BINARY)
# print("[DEBUG] Applied adaptive threshold.")
# # ---- Find contours ----
# contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# print(f"[DEBUG] Found {len(contours)} contours in drawing.")
# svg_header = f'<svg xmlns="http://www.w3.org/2000/svg" width="{w}" height="{h}" viewBox="0 0 {w} {h}">'
# svg_paths = []
# for i, contour in enumerate(contours):
# contour = cv2.approxPolyDP(contour, simplify_tolerance, True)
# if contour.shape[0] < 3:
# continue
# path_data = "M " + " L ".join(f"{int(x)} {int(y)}" for x, y in contour[:, 0, :]) + " Z"
# svg_paths.append(f'<path d="{path_data}" fill="none" stroke="{stroke_color}" stroke-width="1"/>')
# svg_content = svg_header + "".join(svg_paths) + "</svg>"
# print(f"[DEBUG] Generated SVG with {len(svg_paths)} paths.")
# if len(svg_paths) == 0:
# print("[WARN] No visible content detected in the image.")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# def vectorize_image(input_raster_path: Path, output_svg_path: Path = None, options: Optional[Dict] = None) -> Dict:
# """
# Converts a raster (PNG/JPG) into a backgroundless SVG that represents visible shapes.
# Supports transparency, soft edges, grayscale drawings, and colored logos.
# """
# print("\n[DEBUG] π§© Starting vectorize_image()...")
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "input file not found"}
# options = options or {}
# threshold_value = options.get("threshold", 180)
# simplify_tolerance = options.get("simplify_tolerance", 2.0)
# stroke_color = options.get("stroke_color", "black")
# print(f"[DEBUG] Reading image: {input_raster_path}")
# img = cv2.imread(str(input_raster_path), cv2.IMREAD_UNCHANGED)
# if img is None:
# return {"success": False, "error": "cannot read image"}
# h, w = img.shape[:2]
# print(f"[DEBUG] Image shape: {w}x{h}")
# # ---- Handle alpha channel for transparency ----
# if img.shape[2] == 4:
# b, g, r, a = cv2.split(img)
# alpha_mask = a
# print("[DEBUG] Image has alpha channel (transparency detected).")
# else:
# b, g, r = cv2.split(img)
# alpha_mask = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# print("[DEBUG] No alpha channel, using grayscale as mask.")
# # Invert alpha if background is white
# mean_val = np.mean(alpha_mask)
# if mean_val > 200:
# alpha_mask = 255 - alpha_mask
# print("[DEBUG] Inverted mask since background seemed white.")
# # ---- Threshold to get visible content ----
# _, binary = cv2.threshold(alpha_mask, threshold_value, 255, cv2.THRESH_BINARY)
# print("[DEBUG] Applied adaptive threshold.")
# # ---- Find contours ----
# contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# print(f"[DEBUG] Found {len(contours)} contours in drawing.")
# svg_header = f'<svg xmlns="http://www.w3.org/2000/svg" width="{w}" height="{h}" viewBox="0 0 {w} {h}">'
# svg_paths = []
# for i, contour in enumerate(contours):
# contour = cv2.approxPolyDP(contour, simplify_tolerance, True)
# if contour.shape[0] < 3:
# continue
# # ---- Sample mean color inside contour for fill ----
# mask = np.zeros((h, w), dtype=np.uint8)
# cv2.drawContours(mask, [contour], -1, 255, -1)
# mean_color = cv2.mean(img[:, :, :3], mask=mask)
# fill_color = f"rgb({int(mean_color[2])},{int(mean_color[1])},{int(mean_color[0])})" # RGB
# path_data = "M " + " L ".join(f"{int(x)} {int(y)}" for x, y in contour[:, 0, :]) + " Z"
# svg_paths.append(f'<path d="{path_data}" fill="{fill_color}" stroke="{stroke_color}" stroke-width="1"/>')
# svg_content = svg_header + "".join(svg_paths) + "</svg>"
# print(f"[DEBUG] Generated SVG with {len(svg_paths)} paths.")
# if len(svg_paths) == 0:
# print("[WARN] No visible content detected in the image.")
# # Save SVG if path provided
# if output_svg_path:
# Path(output_svg_path).write_text(svg_content)
# print(f"[DEBUG] SVG saved to: {output_svg_path}")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# def vectorize_image(input_raster_path: Path, output_svg_path: Path = None, options: Optional[Dict] = None) -> Dict:
# """
# Converts a raster (PNG/JPG) into an SVG that visually matches the original.
# Preserves colors, gradients, and transparency perfectly by embedding the image.
# """
# print("\n[DEBUG] π§© Starting vectorize_image() with full color preservation...")
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "input file not found"}
# # Read image and encode as base64
# import base64
# import mimetypes
# mime_type, _ = mimetypes.guess_type(input_raster_path)
# if mime_type is None:
# mime_type = "image/png"
# with open(input_raster_path, "rb") as f:
# encoded = base64.b64encode(f.read()).decode("utf-8")
# # Read image size
# import cv2
# img = cv2.imread(str(input_raster_path), cv2.IMREAD_UNCHANGED)
# if img is None:
# return {"success": False, "error": "cannot read image"}
# h, w = img.shape[:2]
# print(f"[DEBUG] Image shape: {w}x{h}")
# # Construct SVG that embeds image as <image> tag
# svg_content = f'''<svg xmlns="http://www.w3.org/2000/svg"
# width="{w}" height="{h}" viewBox="0 0 {w} {h}" version="1.1">
# <image href="data:{mime_type};base64,{encoded}" width="{w}" height="{h}" />
# </svg>'''
# if output_svg_path:
# Path(output_svg_path).write_text(svg_content)
# print(f"[DEBUG] Saved SVG with embedded image to: {output_svg_path}")
# print("[DEBUG] β
Vectorization complete β colors and gradients preserved perfectly.")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# def vectorize_image(input_raster_path: Path, output_svg_path: Optional[Path] = None, options: Optional[Dict] = None) -> Dict:
# """
# Converts a raster image (PNG/JPG) into a visually perfect SVG.
# β
Preserves all colors, gradients, and transparency by embedding the raster as a base64 image.
# β‘ Output SVG is fully scalable and compatible with Manim or web rendering.
# """
# print("\n[DEBUG] π¨ Starting vectorize_image() β full visual fidelity mode")
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "Input file not found"}
# # Detect MIME type
# mime_type, _ = mimetypes.guess_type(input_raster_path)
# if mime_type is None:
# mime_type = "image/png"
# # Read and encode image
# with open(input_raster_path, "rb") as f:
# encoded = base64.b64encode(f.read()).decode("utf-8")
# # Get image size
# img = cv2.imread(str(input_raster_path), cv2.IMREAD_UNCHANGED)
# if img is None:
# return {"success": False, "error": "Cannot read image"}
# h, w = img.shape[:2]
# print(f"[DEBUG] πΌοΈ Image dimensions: {w}x{h}")
# # High-quality embedded SVG
# svg_content = f"""<?xml version="1.0" encoding="UTF-8" standalone="no"?>
# <svg xmlns="http://www.w3.org/2000/svg"
# width="{w}px" height="{h}px"
# viewBox="0 0 {w} {h}"
# version="1.1"
# preserveAspectRatio="xMidYMid meet">
# <image width="{w}" height="{h}"
# href="data:{mime_type};base64,{encoded}"
# style="image-rendering: optimizeQuality;"
# preserveAspectRatio="xMidYMid meet"/>
# </svg>
# """
# if output_svg_path:
# Path(output_svg_path).write_text(svg_content, encoding="utf-8")
# print(f"[DEBUG] πΎ Saved high-fidelity SVG β {output_svg_path}")
# print("[DEBUG] β
Vectorization complete β gradients, alpha, and sharp edges preserved perfectly.")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# def vectorize_image(input_raster_path: Path, output_svg_path: Optional[Path] = None, options: Optional[Dict] = None) -> Dict:
# """
# Converts a raster image (PNG/JPG/PNG with alpha) into a near visually perfect vector-based SVG.
# β
Preserves colors, gradients, and transparency as much as possible.
# β‘ Output SVG is fully scalable and compatible with Manim or web rendering.
# """
# import cv2, numpy as np, mimetypes
# from pathlib import Path
# from sklearn.cluster import KMeans
# print("\n[DEBUG] π¨ Starting vectorize_image() β high-fidelity gradient-aware mode")
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "Input file not found"}
# mime_type, _ = mimetypes.guess_type(input_raster_path)
# if mime_type is None:
# mime_type = "image/png"
# # Read with alpha preserved
# img = cv2.imread(str(input_raster_path), cv2.IMREAD_UNCHANGED)
# if img is None:
# return {"success": False, "error": "Cannot read image"}
# if img.shape[2] == 4:
# bgr, alpha = img[:, :, :3], img[:, :, 3]
# else:
# bgr, alpha = img, np.full(img.shape[:2], 255, dtype=np.uint8)
# h, w = bgr.shape[:2]
# print(f"[DEBUG] πΌοΈ Image dimensions: {w}x{h}")
# # ---------------------------
# # Step 1: Smart color clustering (using KMeans)
# # ---------------------------
# n_colors = (options or {}).get("colors", 24)
# print(f"[DEBUG] π¨ Using {n_colors} colors for smoother accuracy")
# data = bgr.reshape((-1, 3))
# kmeans = KMeans(n_clusters=n_colors, n_init=4, random_state=0).fit(data)
# labels = kmeans.labels_.reshape(h, w)
# centers = np.uint8(kmeans.cluster_centers_)
# # ---------------------------
# # Step 2: Build SVG Paths
# # ---------------------------
# print("[DEBUG] βοΈ Extracting color regions...")
# paths = []
# for idx, color in enumerate(centers):
# mask = (labels == idx).astype(np.uint8) * 255
# contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# hex_color = "#{:02x}{:02x}{:02x}".format(*color)
# for cnt in contours:
# if len(cnt) > 3:
# d = "M " + " L ".join(f"{p[0][0]},{p[0][1]}" for p in cnt) + " Z"
# # Apply average alpha for this region
# region_alpha = np.mean(alpha[mask == 255]) / 255.0
# if region_alpha < 0.05: # fully transparent, skip
# continue
# fill_opacity = round(region_alpha, 3)
# paths.append((hex_color, fill_opacity, d))
# if not paths:
# return {"success": False, "error": "No visible regions found (maybe full transparency)"}
# print(f"[DEBUG] β
{len(paths)} color regions traced")
# # ---------------------------
# # Step 3: Gradient approximation
# # ---------------------------
# print("[DEBUG] π Estimating global color gradients...")
# dominant1, dominant2 = centers[0], centers[-1]
# grad_id = "grad_main"
# grad_def = f"""
# <defs>
# <linearGradient id="{grad_id}" x1="0%" y1="0%" x2="100%" y2="100%">
# <stop offset="0%" stop-color="#{dominant1[0]:02x}{dominant1[1]:02x}{dominant1[2]:02x}" />
# <stop offset="100%" stop-color="#{dominant2[0]:02x}{dominant2[1]:02x}{dominant2[2]:02x}" />
# </linearGradient>
# </defs>
# """
# # ---------------------------
# # Step 4: Assemble SVG
# # ---------------------------
# svg_content = [
# '<?xml version="1.0" encoding="UTF-8" standalone="no"?>',
# f'<svg xmlns="http://www.w3.org/2000/svg" width="{w}px" height="{h}px" viewBox="0 0 {w} {h}" version="1.1">'
# ]
# svg_content.append(grad_def)
# for color, opacity, d in paths:
# svg_content.append(f' <path d="{d}" fill="{color}" fill-opacity="{opacity}" stroke="none"/>')
# svg_content.append('</svg>')
# svg_content = "\n".join(svg_content)
# # Save SVG
# if output_svg_path:
# Path(output_svg_path).write_text(svg_content, encoding="utf-8")
# print(f"[DEBUG] πΎ Saved vectorized SVG β {output_svg_path}")
# print("[DEBUG] β
Vectorization complete β transparency, color, and gradient preserved.")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# def vectorize_image(input_raster_path: Path, options: Optional[Dict] = None) -> Dict:
# """
# Converts a raster image (PNG/JPG/WEBP) into a high-quality vector SVG using PyVTracer.
# β
Uses only PyVTracer
# β
Returns SVG directly in memory
# β
Fixes all int/float/bool/string conversion issues
# """
# print("\n[DEBUG] π¨ Starting vectorize_image() β final type-safe configuration")
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "Input file not found"}
# opts = options or {}
# try:
# with Image.open(input_raster_path) as img:
# w, h = img.size
# tracer = pyvtracer.Vtracer()
# # β
Correct, final parameter typing
# tracer.input_path = str(input_raster_path)
# tracer.color_mode = str(opts.get("color_mode", "color"))
# tracer.filter_speckle = int(opts.get("filter_speckle", 2))
# tracer.corner_threshold = int(opts.get("corner_threshold", 60))
# tracer.color_precision = int(opts.get("color_precision", 10))
# tracer.layer_difference = int(opts.get("layer_difference", 16))
# tracer.path_precision = int(opts.get("path_precision", 2))
# tracer.length_threshold = int(opts.get("length_threshold", 4))
# tracer.splice_threshold = int(opts.get("splice_threshold", 45))
# tracer.hierarchical = "true" if opts.get("hierarchical", True) else "false"
# tracer.max_iterations = int(opts.get("max_iterations", 10))
# tracer.path_simplify_mode = int(opts.get("path_simplify_mode", 0))
# print("[DEBUG] β
All parameters properly typed (int/str).")
# print(f"[DEBUG] π Vectorizing: {input_raster_path.name}")
# # π Get SVG string directly
# if hasattr(tracer, "to_svg_string"):
# svg_content = tracer.to_svg_string()
# else:
# tmp_svg = Path(tempfile.gettempdir()) / f"{input_raster_path.stem}_vtrace.svg"
# tracer.output_path = str(tmp_svg)
# tracer.to_svg()
# svg_content = tmp_svg.read_text(encoding="utf-8")
# tmp_svg.unlink(missing_ok=True)
# print("[DEBUG] β
Vectorization complete β SVG generated in memory.")
# return {
# "success": True,
# "svg": svg_content,
# "width": w,
# "height": h
# }
# except Exception as e:
# print(f"β [ERROR] PyVTracer failed: {e}")
# return {"success": False, "error": f"PyVTracer failed: {e}"}
# from pathlib import Path
# from typing import Optional, Dict, Any
# from PIL import Image
# import tempfile
# # prefer the official vtracer binding from PyPI
# import vtracer
# # mapping and sane defaults (names & types follow vtracer docs)
# DEFAULTS: Dict[str, Any] = {
# "colormode": "color", # "color" or "binary"
# "hierarchical": "stacked", # "stacked" or "cutout"
# "mode": "spline", # "spline", "polygon", or "none"
# "filter_speckle": 2, # int
# "color_precision": 14, # int
# "layer_difference": 6, # int (gradient step)
# "corner_threshold": 50, # int
# "length_threshold": 3.5, # float (in [3.5, 10])
# "max_iterations": 10, # int
# "splice_threshold": 40, # int
# "path_precision": 10 # int (path digits/precision)
# }
# def _normalize_options(opts: Optional[Dict]) -> Dict:
# """
# Keep only acceptable keys with correct types according to official docs.
# """
# opts = opts or {}
# out: Dict[str, Any] = {}
# # strings (colormode, hierarchical, mode)
# out["colormode"] = str(opts.get("colormode", DEFAULTS["colormode"]))
# out["hierarchical"] = str(opts.get("hierarchical", DEFAULTS["hierarchical"]))
# out["mode"] = str(opts.get("mode", DEFAULTS["mode"]))
# # integer parameters
# for k in ("filter_speckle", "color_precision", "layer_difference",
# "corner_threshold", "max_iterations", "splice_threshold",
# "path_precision"):
# out[k] = int(opts.get(k, DEFAULTS[k]))
# # float parameter
# out["length_threshold"] = float(opts.get("length_threshold", DEFAULTS["length_threshold"]))
# return out
# def vectorize_image(input_raster_path: Path, options: Optional[Dict] = None) -> Dict:
# """
# Vectorize using the official vtracer binding.
# Returns:
# {
# "success": True,
# "svg": "<svg ...>",
# "width": w,
# "height": h
# }
# On error:
# {"success": False, "error": "message"}
# """
# input_raster_path = Path(input_raster_path)
# if not input_raster_path.exists():
# return {"success": False, "error": "Input file not found"}
# opts = _normalize_options(options)
# try:
# # read width/height
# with Image.open(input_raster_path) as img:
# w, h = img.size
# # convert to bytes for the raw API if needed
# img_bytes_io = None
# try:
# # ensure a common in-memory format, keep original mode if possible
# img_format = img.format or "PNG"
# img_bytes_io = tempfile.SpooledTemporaryFile() # small-memory friendly
# img.save(img_bytes_io, format=img_format)
# img_bytes_io.seek(0)
# raw_bytes = img_bytes_io.read()
# finally:
# if img_bytes_io is not None:
# img_bytes_io.close()
# # Prefer in-memory API: convert_raw_image_to_svg(bytes, img_format=...)
# if hasattr(vtracer, "convert_raw_image_to_svg"):
# # vtracer expects bytes and an image format string like 'png' or 'jpg'
# img_format_lower = (Image.open(input_raster_path).format or "PNG").lower()
# svg_str = vtracer.convert_raw_image_to_svg(raw_bytes, img_format=img_format_lower, **opts)
# elif hasattr(vtracer, "convert_pixels_to_svg"):
# # alternative: convert pixels to svg β slower for large images
# img = Image.open(input_raster_path).convert("RGBA")
# pixels = list(img.getdata())
# svg_str = vtracer.convert_pixels_to_svg(pixels, img.width, img.height, **opts)
# else:
# # last resort: call convert_image_to_svg_py which writes to file; read & delete the file
# tmp_svg = Path(tempfile.gettempdir()) / f"{input_raster_path.stem}_vtrace_temp.svg"
# # convert_image_to_svg_py(inp, out, **kwargs) - writes file
# vtracer.convert_image_to_svg_py(str(input_raster_path), str(tmp_svg), **opts)
# svg_str = tmp_svg.read_text(encoding="utf-8")
# try:
# tmp_svg.unlink()
# except Exception:
# pass
# return {"success": True, "svg": svg_str, "width": w, "height": h}
# except Exception as e:
# # return full error message so you can debug inside logs
# return {"success": False, "error": f"VTracer failed: {e}"}
from pathlib import Path
from typing import Optional, Dict, Any
from PIL import Image, ImageFilter
import tempfile
import vtracer
# DEFAULTS: Dict[str, Any] = {
# "colormode": "color",
# "hierarchical": "stacked",
# "mode": "spline",
# "filter_speckle": 2,
# "color_precision": 14,
# "layer_difference": 2,
# "corner_threshold": 50,
# "length_threshold": 3.5,
# "max_iterations": 10,
# "splice_threshold": 40,
# "path_precision": 10
# }
# pro
# DEFAULTS_PAID: Dict[str, Any] = {
# "colormode": "color",
# "hierarchical": "stacked",
# "mode": "spline", # sharpest edges and curves
# "filter_speckle": 0, # keep all tiny speckles
# "color_precision": 256, # extremely high color accuracy
# "layer_difference": 8, # very fine gradient layers
# "corner_threshold": 100, # preserve almost all corners
# "length_threshold": 0.1, # keep even the tiniest paths
# "max_iterations": 500, # thorough path optimization
# "splice_threshold": 100, # merge paths very carefully
# "path_precision": 128 # ultra-smooth curves and clean edges
# }
DEFAULTS: Dict[str, Any] = {
"colormode": "color",
"hierarchical": "stacked",
"mode": "curve", # sharper edges
"filter_speckle": 1, # minimal removal
"color_precision": 20, # high color accuracy
"layer_difference": 10, # finer gradient layers
"corner_threshold": 35, # preserve corners
"length_threshold": 1.0, # more detail
"max_iterations": 10,
"splice_threshold": 40,
"path_precision": 16 # smoother curves and clean edges
}
def _normalize_options(opts: Optional[Dict]) -> Dict[str, Any]:
opts = opts or {}
out: Dict[str, Any] = {}
out["colormode"] = str(opts.get("colormode", DEFAULTS["colormode"]))
out["hierarchical"] = str(opts.get("hierarchical", DEFAULTS["hierarchical"]))
out["mode"] = str(opts.get("mode", DEFAULTS["mode"]))
for k in ("filter_speckle", "color_precision", "layer_difference",
"corner_threshold", "max_iterations", "splice_threshold",
"path_precision"):
out[k] = int(opts.get(k, DEFAULTS[k]))
out["length_threshold"] = float(opts.get("length_threshold", DEFAULTS["length_threshold"]))
return out
def vectorize_image(input_raster_path: Path, options: Optional[Dict] = None,
preprocess: bool = False) -> Dict[str, Any]:
input_raster_path = Path(input_raster_path)
if not input_raster_path.exists():
return {"success": False, "error": "Input file not found"}
opts = _normalize_options(options)
try:
with Image.open(input_raster_path) as img:
# preserve original mode
orig_mode = img.mode
w, h = img.size
if preprocess:
# optional: add slight blur or noise to reduce banding in gradients
img = img.convert("RGB")
img = img.filter(ImageFilter.GaussianBlur(radius=0.8))
# you could add noise here if needed
img_format = img.format or "PNG"
bytes_io = tempfile.SpooledTemporaryFile()
img.save(bytes_io, format=img_format)
bytes_io.seek(0)
raw_bytes = bytes_io.read()
bytes_io.close()
# Use in-memory API if available
if hasattr(vtracer, "convert_raw_image_to_svg"):
format_lower = img_format.lower()
svg_str = vtracer.convert_raw_image_to_svg(raw_bytes, img_format=format_lower, **opts)
elif hasattr(vtracer, "convert_pixels_to_svg"):
with Image.open(input_raster_path) as img2:
img2 = img2.convert("RGBA")
pixels = list(img2.getdata())
svg_str = vtracer.convert_pixels_to_svg(pixels, img2.width, img2.height, **opts)
else:
tmp_svg = Path(tempfile.gettempdir()) / f"{input_raster_path.stem}_vtrace_temp.svg"
vtracer.convert_image_to_svg_py(str(input_raster_path), str(tmp_svg), **opts)
svg_str = tmp_svg.read_text(encoding="utf-8")
try:
tmp_svg.unlink()
except Exception:
pass
return {
"success": True,
"svg": svg_str,
"width": w,
"height": h,
"mode": orig_mode
}
except Exception as e:
return {"success": False, "error": f"VTracer failed: {e}"}
|