import spaces import gradio as gr import torch from PIL import Image from diffusers import DiffusionPipeline import random torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = True # Initialize the base model and specific LoRA base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) lora_repo = "kaytoo2022/cara-the-cavapoo-flux" trigger_word = "Cara the Cavapoo" # Leave trigger_word blank if not used. pipe.load_lora_weights(lora_repo) pipe.to("cuda") MAX_SEED = 2**32-1 @spaces.GPU() def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): # Set random seed for reproducibility if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device="cuda").manual_seed(seed) # Update progress bar (0% saat mulai) progress(0, "Starting image generation...") # Generate image with progress updates for i in range(1, steps + 1): # Simulate the processing step (in a real scenario, you would integrate this with your image generation process) if i % (steps // 10) == 0: # Update every 10% of the steps progress(i / steps * 100, f"Processing step {i} of {steps}...") # Generate image using the pipeline image = pipe( prompt=f"{prompt} {trigger_word}", num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] # Final update (100%) progress(100, "Completed!") yield image, seed # Example cached image and settings example_image_path = "example0.webp" # Replace with the actual path to the example image example_prompt = """Cara the Cavapoo showing off her cool new t shirt at the beach, a shark is jumping out of the water in the background""" example_cfg_scale = 3.2 example_steps = 32 example_width = 1152 example_height = 896 example_seed = 3981632454 example_lora_scale = 0.85 def load_example(): # Load example image from file example_image = Image.open(example_image_path) return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image with gr.Blocks() as app: gr.Markdown("# Flux RealismLora Image Generator") with gr.Row(): with gr.Column(scale=3): prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5) generate_button = gr.Button("Generate") cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale) steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps) width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height) randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed) lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale) with gr.Column(scale=1): result = gr.Image(label="Generated Image") gr.Markdown("Generate images using RealismLora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]") # Automatically load example data and image when the interface is launched app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]) generate_button.click( run_lora, inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed] ) app.queue() app.launch()