|
import json |
|
import os |
|
import re |
|
|
|
import librosa |
|
import numpy as np |
|
import torch |
|
from torch import no_grad, LongTensor |
|
import commons |
|
import utils |
|
import gradio as gr |
|
from models import SynthesizerTrn |
|
from text import text_to_sequence, _clean_text |
|
from mel_processing import spectrogram_torch |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
def get_text(text, hps, is_phoneme): |
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_phoneme else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
def create_tts_fn(model, hps, speaker_ids): |
|
def tts_fn(text, speaker, speed, is_phoneme): |
|
if limitation: |
|
text_len = len(text) |
|
max_len = 100 |
|
if is_phoneme: |
|
max_len *= 3 |
|
else: |
|
if len(hps.data.text_cleaners) > 0 and hps.data.text_cleaners[0] == "zh_ja_mixture_cleaners": |
|
text_len = len(re.sub("(\[ZH\]|\[JA\])", "", text)) |
|
if text_len > max_len: |
|
return "Error: Text is too long", None |
|
|
|
speaker_id = speaker_ids[speaker] |
|
stn_tst = get_text(text, hps, is_phoneme) |
|
with no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = LongTensor([stn_tst.size(0)]) |
|
sid = LongTensor([speaker_id]) |
|
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, |
|
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() |
|
del stn_tst, x_tst, x_tst_lengths, sid |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return tts_fn |
|
|
|
|
|
|
|
|
|
|
|
def create_to_phoneme_fn(hps): |
|
def to_phoneme_fn(text): |
|
return _clean_text(text, hps.data.text_cleaners) if text != "" else "" |
|
|
|
return to_phoneme_fn |
|
|
|
|
|
css = """ |
|
#advanced-btn { |
|
color: white; |
|
border-color: black; |
|
background: black; |
|
font-size: .7rem !important; |
|
line-height: 19px; |
|
margin-top: 24px; |
|
margin-bottom: 12px; |
|
padding: 2px 8px; |
|
border-radius: 14px !important; |
|
} |
|
#advanced-options { |
|
display: none; |
|
margin-bottom: 20px; |
|
} |
|
""" |
|
|
|
if __name__ == '__main__': |
|
models_tts = [] |
|
name = 'γγ«γ’γ« TTS' |
|
lang = 'ζ₯ζ¬θͺ (Japanese)' |
|
example = 'ι’εγγγγ' |
|
config_path = f"saved_model/config.json" |
|
model_path = f"saved_model/model.pth" |
|
cover_path = f"saved_model/cover.png" |
|
hps = utils.get_hparams_from_file(config_path) |
|
model = SynthesizerTrn( |
|
len(hps.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
utils.load_checkpoint(model_path, model, None) |
|
model.eval() |
|
speaker_ids = [0] |
|
speakers = [name] |
|
|
|
t = 'vits' |
|
models_tts.append((name, cover_path, speakers, lang, example, |
|
hps.symbols, create_tts_fn(model, hps, speaker_ids), |
|
create_to_phoneme_fn(hps))) |
|
|
|
app = gr.Blocks(css=css) |
|
|
|
with app: |
|
gr.Markdown("# Blue Archive Hina TTS Using Vits Model\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=kdrkdrkdr.HinaTTS)\n\n") |
|
|
|
for i, (name, cover_path, speakers, lang, example, symbols, tts_fn, |
|
to_phoneme_fn) in enumerate(models_tts): |
|
|
|
with gr.Column(): |
|
gr.Markdown(f"## {name}\n\n" |
|
f"![cover](file/{cover_path})\n\n" |
|
f"lang: {lang}") |
|
tts_input1 = gr.TextArea(label="Text (100 words limitation)", value=example, |
|
elem_id=f"tts-input{i}") |
|
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers, |
|
type="index", value=speakers[0]) |
|
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1) |
|
with gr.Accordion(label="Advanced Options", open=False): |
|
phoneme_input = gr.Checkbox(value=False, label="Phoneme input") |
|
to_phoneme_btn = gr.Button("Covert text to phoneme") |
|
phoneme_list = gr.Dataset(label="Phoneme list", components=[tts_input1], |
|
samples=[[x] for x in symbols], |
|
elem_id=f"phoneme-list{i}") |
|
phoneme_list_json = gr.Json(value=symbols, visible=False) |
|
tts_submit = gr.Button("Generate", variant="primary") |
|
tts_output1 = gr.Textbox(label="Output Message") |
|
tts_output2 = gr.Audio(label="Output Audio") |
|
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, phoneme_input], |
|
[tts_output1, tts_output2]) |
|
to_phoneme_btn.click(to_phoneme_fn, [tts_input1], [tts_input1]) |
|
phoneme_list.click(None, [phoneme_list, phoneme_list_json], [], |
|
_js=f""" |
|
(i,phonemes) => {{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea"); |
|
let startPos = text_input.selectionStart; |
|
let endPos = text_input.selectionEnd; |
|
let oldTxt = text_input.value; |
|
let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos); |
|
text_input.value = result; |
|
let x = window.scrollX, y = window.scrollY; |
|
text_input.focus(); |
|
text_input.selectionStart = startPos + phonemes[i].length; |
|
text_input.selectionEnd = startPos + phonemes[i].length; |
|
text_input.blur(); |
|
window.scrollTo(x, y); |
|
return []; |
|
}}""") |
|
|
|
app.queue(concurrency_count=3).launch(show_api=False) |
|
|