Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
from transformers import AutoConfig
|
5 |
+
import math
|
6 |
+
from typing import Dict, Tuple, Optional
|
7 |
+
|
8 |
+
|
9 |
+
class LLMMemoryCalculator:
|
10 |
+
def __init__(self):
|
11 |
+
self.precision_bytes = {
|
12 |
+
'fp32': 4,
|
13 |
+
'fp16': 2,
|
14 |
+
'bf16': 2,
|
15 |
+
'int8': 1,
|
16 |
+
'int4': 0.5
|
17 |
+
}
|
18 |
+
|
19 |
+
# -------------------------------------------------
|
20 |
+
# 📥 基础工具
|
21 |
+
# -------------------------------------------------
|
22 |
+
def get_model_config(self, model_id: str) -> Dict:
|
23 |
+
"""获取模型配置"""
|
24 |
+
try:
|
25 |
+
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
|
26 |
+
return config
|
27 |
+
except Exception as e:
|
28 |
+
raise Exception(f"无法获取模型配置: {str(e)}")
|
29 |
+
|
30 |
+
def get_file_size_from_url(self, model_id: str, filename: str) -> int:
|
31 |
+
"""通过 HEAD 请求获取文件大小(备用)"""
|
32 |
+
try:
|
33 |
+
url = f"https://huggingface.co/{model_id}/resolve/main/{filename}"
|
34 |
+
response = requests.head(url, timeout=10)
|
35 |
+
if response.status_code == 200:
|
36 |
+
content_length = response.headers.get('Content-Length')
|
37 |
+
if content_length:
|
38 |
+
return int(content_length)
|
39 |
+
return 0
|
40 |
+
except:
|
41 |
+
return 0
|
42 |
+
|
43 |
+
# -------------------------------------------------
|
44 |
+
# 📦 获取模型权重大小
|
45 |
+
# -------------------------------------------------
|
46 |
+
def get_model_size_from_hf(self, model_id: str) -> Tuple[float, str]:
|
47 |
+
"""优先使用 *.index.json 中的 metadata.total_size,回退到文件列表/HEAD"""
|
48 |
+
try:
|
49 |
+
# 1️⃣ 尝试读取 index.json(safetensors > pytorch)
|
50 |
+
for index_name, tag in [
|
51 |
+
("model.safetensors.index.json", "safetensors_index"),
|
52 |
+
("pytorch_model.bin.index.json", "pytorch_index")
|
53 |
+
]:
|
54 |
+
url = f"https://huggingface.co/{model_id}/resolve/main/{index_name}"
|
55 |
+
resp = requests.get(url, timeout=10)
|
56 |
+
if resp.status_code == 200:
|
57 |
+
try:
|
58 |
+
data = resp.json()
|
59 |
+
except ValueError:
|
60 |
+
# 某些仓库 index.json 以文本形式存储,需要手动解析
|
61 |
+
data = json.loads(resp.text)
|
62 |
+
total_bytes = data.get("metadata", {}).get("total_size", 0)
|
63 |
+
if total_bytes > 0:
|
64 |
+
return total_bytes / (1024 ** 3), tag
|
65 |
+
|
66 |
+
# 2️⃣ 调用 Hub API,尝试直接读取 size 字段
|
67 |
+
api_url = f"https://huggingface.co/api/models/{model_id}"
|
68 |
+
response = requests.get(api_url, timeout=10)
|
69 |
+
if response.status_code != 200:
|
70 |
+
raise Exception(f"API请求失败: {response.status_code}")
|
71 |
+
model_info = response.json()
|
72 |
+
|
73 |
+
# 2a. 查找 siblings 列表中带 size 的 .safetensors 文件
|
74 |
+
safetensors_files = [f for f in model_info.get('siblings', [])
|
75 |
+
if f['rfilename'].endswith('.safetensors') and 'size' in f]
|
76 |
+
if safetensors_files:
|
77 |
+
total_size = sum(f['size'] for f in safetensors_files)
|
78 |
+
return total_size / (1024 ** 3), "safetensors_files"
|
79 |
+
|
80 |
+
# 2b. 使用 HEAD 请求补全未包含 size 的 .safetensors 文件
|
81 |
+
safetensors_no_size = [f for f in model_info.get('siblings', [])
|
82 |
+
if f['rfilename'].endswith('.safetensors')]
|
83 |
+
if safetensors_no_size:
|
84 |
+
total_size = 0
|
85 |
+
for f in safetensors_no_size:
|
86 |
+
total_size += self.get_file_size_from_url(model_id, f['rfilename'])
|
87 |
+
if total_size > 0:
|
88 |
+
return total_size / (1024 ** 3), "safetensors_head"
|
89 |
+
|
90 |
+
# 2c. 同理处理 pytorch_model-xxxxx.bin
|
91 |
+
pytorch_files = [f for f in model_info.get('siblings', [])
|
92 |
+
if f['rfilename'].endswith('.bin') and 'size' in f]
|
93 |
+
if pytorch_files:
|
94 |
+
total_size = sum(f['size'] for f in pytorch_files)
|
95 |
+
return total_size / (1024 ** 3), "pytorch_files"
|
96 |
+
|
97 |
+
pytorch_no_size = [f for f in model_info.get('siblings', [])
|
98 |
+
if f['rfilename'].endswith('.bin')]
|
99 |
+
if pytorch_no_size:
|
100 |
+
total_size = 0
|
101 |
+
for f in pytorch_no_size:
|
102 |
+
total_size += self.get_file_size_from_url(model_id, f['rfilename'])
|
103 |
+
if total_size > 0:
|
104 |
+
return total_size / (1024 ** 3), "pytorch_head"
|
105 |
+
|
106 |
+
# 3️⃣ 如果仍然无法确定大小,走估算逻辑
|
107 |
+
raise Exception("未找到权重大小信息")
|
108 |
+
|
109 |
+
except Exception:
|
110 |
+
# 估算
|
111 |
+
return self.estimate_model_size_from_config(model_id)
|
112 |
+
|
113 |
+
# -------------------------------------------------
|
114 |
+
# 📐 估算逻辑(与原始保持一致)
|
115 |
+
# -------------------------------------------------
|
116 |
+
def estimate_model_size_from_config(self, model_id: str) -> Tuple[float, str]:
|
117 |
+
"""根据 config.json 估算模型大小(FP16)"""
|
118 |
+
try:
|
119 |
+
config = self.get_model_config(model_id)
|
120 |
+
|
121 |
+
vocab_size = getattr(config, 'vocab_size', 50000)
|
122 |
+
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096))
|
123 |
+
num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 32))
|
124 |
+
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4)
|
125 |
+
|
126 |
+
# Embedding
|
127 |
+
embedding_params = vocab_size * hidden_size
|
128 |
+
|
129 |
+
# Transformer layer
|
130 |
+
attention_params = 4 * hidden_size * hidden_size
|
131 |
+
ffn_params = 2 * hidden_size * intermediate_size
|
132 |
+
ln_params = 2 * hidden_size
|
133 |
+
params_per_layer = attention_params + ffn_params + ln_params
|
134 |
+
|
135 |
+
total_params = embedding_params + num_layers * params_per_layer
|
136 |
+
if hasattr(config, 'tie_word_embeddings') and not config.tie_word_embeddings:
|
137 |
+
total_params += vocab_size * hidden_size
|
138 |
+
|
139 |
+
model_size_gb = (total_params * 2) / (1024 ** 3) # 默认 fp16
|
140 |
+
return model_size_gb, "estimated"
|
141 |
+
|
142 |
+
except Exception as e:
|
143 |
+
raise Exception(f"无法估算模型大小: {str(e)}")
|
144 |
+
|
145 |
+
# -------------------------------------------------
|
146 |
+
# 🗄️ KV Cache 计算(原逻辑保持)
|
147 |
+
# -------------------------------------------------
|
148 |
+
def calculate_kv_cache_size(self, config, context_length: int, batch_size: int = 1) -> Dict[str, float]:
|
149 |
+
try:
|
150 |
+
num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 32))
|
151 |
+
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096))
|
152 |
+
num_attention_heads = getattr(config, 'num_attention_heads', getattr(config, 'num_heads', 32))
|
153 |
+
num_key_value_heads = getattr(config, 'num_key_value_heads', num_attention_heads)
|
154 |
+
is_mla = hasattr(config, 'kv_lora_rank') and config.kv_lora_rank is not None
|
155 |
+
head_dim = hidden_size // num_attention_heads
|
156 |
+
|
157 |
+
if is_mla:
|
158 |
+
kv_lora_rank = getattr(config, 'kv_lora_rank', 512)
|
159 |
+
kv_cache_per_token = kv_lora_rank * 2
|
160 |
+
attention_type = "MLA"
|
161 |
+
elif num_key_value_heads < num_attention_heads:
|
162 |
+
kv_cache_per_token = num_key_value_heads * head_dim * 2
|
163 |
+
attention_type = "GQA"
|
164 |
+
else:
|
165 |
+
kv_cache_per_token = num_attention_heads * head_dim * 2
|
166 |
+
attention_type = "MHA"
|
167 |
+
|
168 |
+
total_kv_cache = (kv_cache_per_token * context_length * num_layers * batch_size * 2) / (1024 ** 3)
|
169 |
+
return {
|
170 |
+
'size_gb': total_kv_cache,
|
171 |
+
'attention_type': attention_type,
|
172 |
+
'num_kv_heads': num_key_value_heads,
|
173 |
+
'num_attention_heads': num_attention_heads,
|
174 |
+
'head_dim': head_dim
|
175 |
+
}
|
176 |
+
except Exception as e:
|
177 |
+
raise Exception(f"计算KV Cache失败: {str(e)}")
|
178 |
+
|
179 |
+
# -------------------------------------------------
|
180 |
+
# 🧮 综合内存需求计算(保持不变)
|
181 |
+
# -------------------------------------------------
|
182 |
+
def calculate_memory_requirements(self, model_id: str, gpu_memory_gb: float, num_gpus: int,
|
183 |
+
context_length: int, utilization_rate: float = 0.9) -> Dict:
|
184 |
+
try:
|
185 |
+
config = self.get_model_config(model_id)
|
186 |
+
model_size_gb, size_source = self.get_model_size_from_hf(model_id)
|
187 |
+
kv_info = self.calculate_kv_cache_size(config, context_length)
|
188 |
+
|
189 |
+
available_memory = gpu_memory_gb * num_gpus * utilization_rate
|
190 |
+
other_overhead = model_size_gb * 0.1
|
191 |
+
total_memory_needed = model_size_gb + kv_info['size_gb'] + other_overhead
|
192 |
+
|
193 |
+
is_feasible = total_memory_needed <= available_memory
|
194 |
+
memory_margin = available_memory - total_memory_needed
|
195 |
+
memory_per_gpu = total_memory_needed / num_gpus
|
196 |
+
|
197 |
+
return {
|
198 |
+
'model_id': model_id,
|
199 |
+
'model_size_gb': round(model_size_gb, 2),
|
200 |
+
'size_source': size_source,
|
201 |
+
'kv_cache_gb': round(kv_info['size_gb'], 2),
|
202 |
+
'attention_type': kv_info['attention_type'],
|
203 |
+
'other_overhead_gb': round(other_overhead, 2),
|
204 |
+
'total_memory_needed_gb': round(total_memory_needed, 2),
|
205 |
+
'available_memory_gb': round(available_memory, 2),
|
206 |
+
'memory_margin_gb': round(memory_margin, 2),
|
207 |
+
'memory_per_gpu_gb': round(memory_per_gpu, 2),
|
208 |
+
'is_feasible': is_feasible,
|
209 |
+
'utilization_per_gpu': round((memory_per_gpu / gpu_memory_gb) * 100, 1),
|
210 |
+
'config_info': {
|
211 |
+
'num_layers': getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 'N/A')),
|
212 |
+
'hidden_size': getattr(config, 'hidden_size', getattr(config, 'd_model', 'N/A')),
|
213 |
+
'num_attention_heads': kv_info['num_attention_heads'],
|
214 |
+
'num_kv_heads': kv_info['num_kv_heads'],
|
215 |
+
'head_dim': kv_info['head_dim']
|
216 |
+
}
|
217 |
+
}
|
218 |
+
except Exception as e:
|
219 |
+
return {'error': str(e)}
|
220 |
+
|
221 |
+
|
222 |
+
# -------------------------------------------------
|
223 |
+
# 🌟 Gradio 界面构建(保持原逻辑)
|
224 |
+
# -------------------------------------------------
|
225 |
+
|
226 |
+
def create_gradio_interface():
|
227 |
+
calculator = LLMMemoryCalculator()
|
228 |
+
|
229 |
+
def calculate_memory(model_id, gpu_memory, num_gpus, context_length, utilization_rate):
|
230 |
+
if not model_id.strip():
|
231 |
+
return "请输入模型ID"
|
232 |
+
|
233 |
+
try:
|
234 |
+
result = calculator.calculate_memory_requirements(
|
235 |
+
model_id.strip(),
|
236 |
+
float(gpu_memory),
|
237 |
+
int(num_gpus),
|
238 |
+
int(context_length),
|
239 |
+
float(utilization_rate) / 100
|
240 |
+
)
|
241 |
+
|
242 |
+
if 'error' in result:
|
243 |
+
return f"❌ 错误: {result['error']}"
|
244 |
+
|
245 |
+
status = "✅ 可以运行" if result['is_feasible'] else "❌ 显存不足"
|
246 |
+
|
247 |
+
output = f"""
|
248 |
+
## 模型分析结果
|
249 |
+
|
250 |
+
**模型**: {result['model_id']}
|
251 |
+
**状态**: {status}
|
252 |
+
|
253 |
+
### 📊 内存分析
|
254 |
+
- **模型大小**: {result['model_size_gb']} GB ({result['size_source']})
|
255 |
+
- **KV Cache**: {result['kv_cache_gb']} GB
|
256 |
+
- **其他开销**: {result['other_overhead_gb']} GB
|
257 |
+
- **总需求**: {result['total_memory_needed_gb']} GB
|
258 |
+
- **可用显存**: {result['available_memory_gb']} GB
|
259 |
+
- **剩余显存**: {result['memory_margin_gb']} GB
|
260 |
+
|
261 |
+
### 🔧 模型配置
|
262 |
+
- **注意力类型**: {result['attention_type']}
|
263 |
+
- **层数**: {result['config_info']['num_layers']}
|
264 |
+
- **隐藏维度**: {result['config_info']['hidden_size']}
|
265 |
+
- **注意力头数**: {result['config_info']['num_attention_heads']}
|
266 |
+
- **KV头数**: {result['config_info']['num_kv_heads']}
|
267 |
+
- **头维度**: {result['config_info']['head_dim']}
|
268 |
+
|
269 |
+
### 💾 GPU使用情况
|
270 |
+
- **每GPU内存**: {result['memory_per_gpu_gb']} GB
|
271 |
+
- **每GPU利用率**: {result['utilization_per_gpu']}%
|
272 |
+
|
273 |
+
### 💡 建议
|
274 |
+
"""
|
275 |
+
if result['is_feasible']:
|
276 |
+
output += f"✅ 当前配置可以成功运行该模型。剩余 {result['memory_margin_gb']} GB 显存。"
|
277 |
+
else:
|
278 |
+
needed_extra = abs(result['memory_margin_gb'])
|
279 |
+
output += f"❌ 需要额外 {needed_extra} GB 显存才能运行。\n建议:\n- 增加GPU数量\n- 使用更大显存的GPU\n- 减少上下文长度\n- 使用模型量化(如int8/int4)"
|
280 |
+
|
281 |
+
return output
|
282 |
+
except Exception as e:
|
283 |
+
return f"❌ 计算出错: {str(e)}"
|
284 |
+
|
285 |
+
with gr.Blocks(title="LLM GPU内存计算器", theme=gr.themes.Soft()) as demo:
|
286 |
+
gr.Markdown("# 🚀 LLM GPU内存需求计算器")
|
287 |
+
gr.Markdown("输入模型信息和硬件配置,计算是否能够成功运行大语言模型")
|
288 |
+
|
289 |
+
with gr.Row():
|
290 |
+
with gr.Column(scale=1):
|
291 |
+
gr.Markdown("## 📝 输入参数")
|
292 |
+
|
293 |
+
model_id = gr.Textbox(label="🤗 Hugging Face 模型ID",
|
294 |
+
placeholder="例如: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
295 |
+
value="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B")
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
gpu_memory = gr.Number(label="💾 单张GPU显存 (GB)", value=24, minimum=1, maximum=1000)
|
299 |
+
num_gpus = gr.Number(label="🔢 GPU数量", value=1, minimum=1, maximum=64, precision=0)
|
300 |
+
|
301 |
+
with gr.Row():
|
302 |
+
context_length = gr.Number(label="📏 上下文长度", value=16384, minimum=512, maximum=1000000, precision=0)
|
303 |
+
utilization_rate = gr.Slider(label="⚡ 显存利用率 (%)", minimum=50, maximum=95, value=90, step=5)
|
304 |
+
|
305 |
+
calculate_btn = gr.Button("🔍 计算内存需求", variant="primary")
|
306 |
+
|
307 |
+
with gr.Column(scale=2):
|
308 |
+
gr.Markdown("## 📊 计算结果")
|
309 |
+
output = gr.Markdown("点击计算按钮开始分析...")
|
310 |
+
|
311 |
+
calculate_btn.click(fn=calculate_memory,
|
312 |
+
inputs=[model_id, gpu_memory, num_gpus, context_length, utilization_rate],
|
313 |
+
outputs=output)
|
314 |
+
|
315 |
+
gr.Markdown("""
|
316 |
+
## 📚 使用示例
|
317 |
+
|
318 |
+
**小型模型**: `microsoft/DialoGPT-medium`
|
319 |
+
**中型模型**: `microsoft/DialoGPT-large`
|
320 |
+
**大型模型**: `meta-llama/Llama-2-7b-hf`
|
321 |
+
**超大模型**: `meta-llama/Llama-2-13b-hf`
|
322 |
+
|
323 |
+
注意:某些模型可能需要申请访问权限。
|
324 |
+
""")
|
325 |
+
|
326 |
+
return demo
|
327 |
+
|
328 |
+
|
329 |
+
if __name__ == "__main__":
|
330 |
+
demo = create_gradio_interface()
|
331 |
+
demo.launch(share=True, debug=True)
|