Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		Sang-Hoon Lee
		
	commited on
		
		
					Commit 
							
							·
						
						6d99823
	
1
								Parent(s):
							
							aca1ebd
								
Delete app.py.py
Browse files
    	
        app.py.py
    DELETED
    
    | 
         @@ -1,236 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import os
         
     | 
| 2 | 
         
            -
            import torch
         
     | 
| 3 | 
         
            -
            import argparse
         
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            from scipy.io.wavfile import write
         
     | 
| 6 | 
         
            -
            import torchaudio
         
     | 
| 7 | 
         
            -
            import utils
         
     | 
| 8 | 
         
            -
            from Mels_preprocess import MelSpectrogramFixed
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            from hierspeechpp_speechsynthesizer import (
         
     | 
| 11 | 
         
            -
                SynthesizerTrn
         
     | 
| 12 | 
         
            -
            )
         
     | 
| 13 | 
         
            -
            from ttv_v1.text import text_to_sequence
         
     | 
| 14 | 
         
            -
            from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
         
     | 
| 15 | 
         
            -
            from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
         
     | 
| 16 | 
         
            -
            from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
         
     | 
| 17 | 
         
            -
            from denoiser.generator import MPNet
         
     | 
| 18 | 
         
            -
            from denoiser.infer import denoise
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            import gradio as gr
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
            def load_text(fp):
         
     | 
| 23 | 
         
            -
                with open(fp, 'r') as f:
         
     | 
| 24 | 
         
            -
                    filelist = [line.strip() for line in f.readlines()]
         
     | 
| 25 | 
         
            -
                return filelist
         
     | 
| 26 | 
         
            -
            def load_checkpoint(filepath, device):
         
     | 
| 27 | 
         
            -
                print(filepath)
         
     | 
| 28 | 
         
            -
                assert os.path.isfile(filepath)
         
     | 
| 29 | 
         
            -
                print("Loading '{}'".format(filepath))
         
     | 
| 30 | 
         
            -
                checkpoint_dict = torch.load(filepath, map_location=device)
         
     | 
| 31 | 
         
            -
                print("Complete.")
         
     | 
| 32 | 
         
            -
                return checkpoint_dict
         
     | 
| 33 | 
         
            -
            def get_param_num(model):
         
     | 
| 34 | 
         
            -
                num_param = sum(param.numel() for param in model.parameters())
         
     | 
| 35 | 
         
            -
                return num_param
         
     | 
| 36 | 
         
            -
            def intersperse(lst, item):
         
     | 
| 37 | 
         
            -
              result = [item] * (len(lst) * 2 + 1)
         
     | 
| 38 | 
         
            -
              result[1::2] = lst
         
     | 
| 39 | 
         
            -
              return result
         
     | 
| 40 | 
         
            -
            def add_blank_token(text):
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                text_norm = intersperse(text, 0)
         
     | 
| 43 | 
         
            -
                text_norm = torch.LongTensor(text_norm)
         
     | 
| 44 | 
         
            -
                return text_norm
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            def tts(text, 
         
     | 
| 47 | 
         
            -
                    prompt, 
         
     | 
| 48 | 
         
            -
                    ttv_temperature, 
         
     | 
| 49 | 
         
            -
                    vc_temperature, 
         
     | 
| 50 | 
         
            -
                    duratuion_temperature, 
         
     | 
| 51 | 
         
            -
                    duratuion_length, 
         
     | 
| 52 | 
         
            -
                    denoise_ratio, 
         
     | 
| 53 | 
         
            -
                    random_seed):
         
     | 
| 54 | 
         
            -
                
         
     | 
| 55 | 
         
            -
                torch.manual_seed(random_seed)
         
     | 
| 56 | 
         
            -
                torch.cuda.manual_seed(random_seed)
         
     | 
| 57 | 
         
            -
                np.random.seed(random_seed)
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                text_len = len(text)
         
     | 
| 60 | 
         
            -
                if text_len > 200:
         
     | 
| 61 | 
         
            -
                    raise gr.Error("Text length limited to 200 characters for this demo. Current text length is " + str(text_len))
         
     | 
| 62 | 
         
            -
                   
         
     | 
| 63 | 
         
            -
                else:
         
     | 
| 64 | 
         
            -
                    text = text_to_sequence(str(text), ["english_cleaners2"])
         
     | 
| 65 | 
         
            -
                    
         
     | 
| 66 | 
         
            -
                    token = add_blank_token(text).unsqueeze(0).cuda()
         
     | 
| 67 | 
         
            -
                    token_length = torch.LongTensor([token.size(-1)]).cuda() 
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                    # Prompt load
         
     | 
| 70 | 
         
            -
                    # sample_rate, audio = prompt
         
     | 
| 71 | 
         
            -
                    # audio = torch.FloatTensor([audio]).cuda()
         
     | 
| 72 | 
         
            -
                    # if audio.shape[0] != 1:
         
     | 
| 73 | 
         
            -
                    #     audio = audio[:1,:] 
         
     | 
| 74 | 
         
            -
                    # audio = audio / 32768 
         
     | 
| 75 | 
         
            -
                    audio, sample_rate = torchaudio.load(prompt)
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
                    # support only single channel
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                    # Resampling
         
     | 
| 80 | 
         
            -
                    if sample_rate != 16000:
         
     | 
| 81 | 
         
            -
                        audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window") 
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                    # We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
         
     | 
| 84 | 
         
            -
                    ori_prompt_len = audio.shape[-1]
         
     | 
| 85 | 
         
            -
                    p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
         
     | 
| 86 | 
         
            -
                    audio = torch.nn.functional.pad(audio, (0, p), mode='constant').data
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                    # If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS 
         
     | 
| 89 | 
         
            -
                    # We will have a plan to replace a memory-efficient denoiser 
         
     | 
| 90 | 
         
            -
                    if denoise == 0:
         
     | 
| 91 | 
         
            -
                        audio = torch.cat([audio.cuda(), audio.cuda()], dim=0)
         
     | 
| 92 | 
         
            -
                    else:
         
     | 
| 93 | 
         
            -
                        with torch.no_grad():
         
     | 
| 94 | 
         
            -
                            
         
     | 
| 95 | 
         
            -
                            if ori_prompt_len > 80000:
         
     | 
| 96 | 
         
            -
                                denoised_audio = []
         
     | 
| 97 | 
         
            -
                                for i in range((ori_prompt_len//80000)):
         
     | 
| 98 | 
         
            -
                                    denoised_audio.append(denoise(audio.squeeze(0).cuda()[i*80000:(i+1)*80000], denoiser, hps_denoiser))
         
     | 
| 99 | 
         
            -
                                
         
     | 
| 100 | 
         
            -
                                denoised_audio.append(denoise(audio.squeeze(0).cuda()[(i+1)*80000:], denoiser, hps_denoiser))
         
     | 
| 101 | 
         
            -
                                denoised_audio = torch.cat(denoised_audio, dim=1)
         
     | 
| 102 | 
         
            -
                            else:
         
     | 
| 103 | 
         
            -
                                denoised_audio = denoise(audio.squeeze(0).cuda(), denoiser, hps_denoiser)
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                        audio = torch.cat([audio.cuda(), denoised_audio[:,:audio.shape[-1]]], dim=0)
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                    audio = audio[:,:ori_prompt_len]  # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                    if audio.shape[-1]<48000:
         
     | 
| 110 | 
         
            -
                        audio = torch.cat([audio,audio,audio,audio,audio], dim=1)
         
     | 
| 111 | 
         
            -
             
     | 
| 112 | 
         
            -
                    src_mel = mel_fn(audio.cuda())
         
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
                    src_length = torch.LongTensor([src_mel.size(2)]).to(device)
         
     | 
| 115 | 
         
            -
                    src_length2 = torch.cat([src_length,src_length], dim=0)
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                    ## TTV (Text --> W2V, F0)
         
     | 
| 118 | 
         
            -
                    with torch.no_grad():
         
     | 
| 119 | 
         
            -
                        w2v_x, pitch = text2w2v.infer_noise_control(token, token_length, src_mel, src_length2, 
         
     | 
| 120 | 
         
            -
                                                                    noise_scale=ttv_temperature, noise_scale_w=duratuion_temperature, 
         
     | 
| 121 | 
         
            -
                                                                    length_scale=duratuion_length, denoise_ratio=denoise_ratio)
         
     | 
| 122 | 
         
            -
                        src_length = torch.LongTensor([w2v_x.size(2)]).cuda()  
         
     | 
| 123 | 
         
            -
                    
         
     | 
| 124 | 
         
            -
                        pitch[pitch<torch.log(torch.tensor([55]).cuda())]  = 0
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                        ## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
         
     | 
| 127 | 
         
            -
                        converted_audio = \
         
     | 
| 128 | 
         
            -
                            net_g.voice_conversion_noise_control(w2v_x, src_length, src_mel, src_length2, pitch, noise_scale=vc_temperature, denoise_ratio=denoise_ratio)
         
     | 
| 129 | 
         
            -
                
         
     | 
| 130 | 
         
            -
                        converted_audio = speechsr(converted_audio)
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                    converted_audio = converted_audio.squeeze()
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                    converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999 
         
     | 
| 135 | 
         
            -
                    converted_audio = converted_audio.cpu().numpy().astype('int16')
         
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
                    write('output.wav', 48000, converted_audio)
         
     | 
| 138 | 
         
            -
                    return 'output.wav'
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
            def main():
         
     | 
| 141 | 
         
            -
                print('Initializing Inference Process..')
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                parser = argparse.ArgumentParser()
         
     | 
| 144 | 
         
            -
                parser.add_argument('--input_prompt', default='example/steve-jobs-2005.wav')
         
     | 
| 145 | 
         
            -
                parser.add_argument('--input_txt', default='example/abstract.txt')
         
     | 
| 146 | 
         
            -
                parser.add_argument('--output_dir', default='output')
         
     | 
| 147 | 
         
            -
                parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
         
     | 
| 148 | 
         
            -
                parser.add_argument('--ckpt_text2w2v', '-ct', help='text2w2v checkpoint path', default='./logs/ttv_libritts_v1/ttv_lt960_ckpt.pth')
         
     | 
| 149 | 
         
            -
                parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')  
         
     | 
| 150 | 
         
            -
                parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')  
         
     | 
| 151 | 
         
            -
                parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
         
     | 
| 152 | 
         
            -
                parser.add_argument('--scale_norm', type=str, default='max')
         
     | 
| 153 | 
         
            -
                parser.add_argument('--output_sr', type=float, default=48000)
         
     | 
| 154 | 
         
            -
                parser.add_argument('--noise_scale_ttv', type=float,
         
     | 
| 155 | 
         
            -
                                    default=0.333)
         
     | 
| 156 | 
         
            -
                parser.add_argument('--noise_scale_vc', type=float,
         
     | 
| 157 | 
         
            -
                                    default=0.333)
         
     | 
| 158 | 
         
            -
                parser.add_argument('--denoise_ratio', type=float,
         
     | 
| 159 | 
         
            -
                                    default=0.8)
         
     | 
| 160 | 
         
            -
                parser.add_argument('--duration_ratio', type=float,
         
     | 
| 161 | 
         
            -
                                    default=0.8)
         
     | 
| 162 | 
         
            -
                parser.add_argument('--seed', type=int,
         
     | 
| 163 | 
         
            -
                                    default=1111)
         
     | 
| 164 | 
         
            -
                a = parser.parse_args()
         
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
                global device, hps, hps_t2w2v,h_sr,h_sr48, hps_denoiser
         
     | 
| 167 | 
         
            -
                device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         
     | 
| 168 | 
         
            -
             
     | 
| 169 | 
         
            -
                hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
         
     | 
| 170 | 
         
            -
                hps_t2w2v = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_text2w2v)[0], 'config.json'))
         
     | 
| 171 | 
         
            -
                h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
         
     | 
| 172 | 
         
            -
                h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
         
     | 
| 173 | 
         
            -
                hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
                global mel_fn, net_g, text2w2v, speechsr, denoiser
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                mel_fn = MelSpectrogramFixed(
         
     | 
| 178 | 
         
            -
                    sample_rate=hps.data.sampling_rate,
         
     | 
| 179 | 
         
            -
                    n_fft=hps.data.filter_length,
         
     | 
| 180 | 
         
            -
                    win_length=hps.data.win_length,
         
     | 
| 181 | 
         
            -
                    hop_length=hps.data.hop_length,
         
     | 
| 182 | 
         
            -
                    f_min=hps.data.mel_fmin,
         
     | 
| 183 | 
         
            -
                    f_max=hps.data.mel_fmax,
         
     | 
| 184 | 
         
            -
                    n_mels=hps.data.n_mel_channels,
         
     | 
| 185 | 
         
            -
                    window_fn=torch.hann_window
         
     | 
| 186 | 
         
            -
                ).cuda()  
         
     | 
| 187 | 
         
            -
             
     | 
| 188 | 
         
            -
                net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
         
     | 
| 189 | 
         
            -
                    hps.train.segment_size // hps.data.hop_length,
         
     | 
| 190 | 
         
            -
                    **hps.model).cuda()
         
     | 
| 191 | 
         
            -
                net_g.load_state_dict(torch.load(a.ckpt))
         
     | 
| 192 | 
         
            -
                _ = net_g.eval()
         
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
                text2w2v = Text2W2V(hps.data.filter_length // 2 + 1,
         
     | 
| 195 | 
         
            -
                hps.train.segment_size // hps.data.hop_length,
         
     | 
| 196 | 
         
            -
                **hps_t2w2v.model).cuda()
         
     | 
| 197 | 
         
            -
                text2w2v.load_state_dict(torch.load(a.ckpt_text2w2v))
         
     | 
| 198 | 
         
            -
                text2w2v.eval()
         
     | 
| 199 | 
         
            -
              
         
     | 
| 200 | 
         
            -
                speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
         
     | 
| 201 | 
         
            -
                    h_sr48.train.segment_size // h_sr48.data.hop_length,
         
     | 
| 202 | 
         
            -
                    **h_sr48.model).cuda()
         
     | 
| 203 | 
         
            -
                utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
         
     | 
| 204 | 
         
            -
                speechsr.eval()
         
     | 
| 205 | 
         
            -
                       
         
     | 
| 206 | 
         
            -
                denoiser = MPNet(hps_denoiser).cuda()
         
     | 
| 207 | 
         
            -
                state_dict = load_checkpoint(a.denoiser_ckpt, device)
         
     | 
| 208 | 
         
            -
                denoiser.load_state_dict(state_dict['generator'])
         
     | 
| 209 | 
         
            -
                denoiser.eval()
         
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
                demo_play = gr.Interface(fn = tts,
         
     | 
| 212 | 
         
            -
                                 inputs = [gr.Textbox(max_lines=6, label="Input Text", value="HierSpeech is a zero shot speech synthesis model, which can generate high-quality audio", info="Up to 200 characters"), 
         
     | 
| 213 | 
         
            -
                                           gr.Audio(type='filepath', value="./example/3_rick_gt.wav"), 
         
     | 
| 214 | 
         
            -
                                           gr.Slider(0,1,0.333), 
         
     | 
| 215 | 
         
            -
                                           gr.Slider(0,1,0.333), 
         
     | 
| 216 | 
         
            -
                                           gr.Slider(0,1,1.0), 
         
     | 
| 217 | 
         
            -
                                           gr.Slider(0.5,2,1.0), 
         
     | 
| 218 | 
         
            -
                                           gr.Slider(0,1,0), 
         
     | 
| 219 | 
         
            -
                                           gr.Slider(0,9999,1111)],
         
     | 
| 220 | 
         
            -
                                 outputs = 'audio', 
         
     | 
| 221 | 
         
            -
                                 title = 'HierSpeech++',
         
     | 
| 222 | 
         
            -
                                 description  =  '''<div>
         
     | 
| 223 | 
         
            -
                                        <p style="text-align: left"> HierSpeech++ is a zero-shot speech synthesis model.</p>
         
     | 
| 224 | 
         
            -
                                        <p style="text-align: left"> Our model is trained with LibriTTS dataset so this model only supports english. We will release a multi-lingual HierSpeech++ soon.</p>
         
     | 
| 225 | 
         
            -
                                        <p style="text-align: left"> <a href="https://sh-lee-prml.github.io/HierSpeechpp-demo/">[Demo Page]</a> <a href="https://github.com/sh-lee-prml/HierSpeechpp">[Source Code]</a></p>
         
     | 
| 226 | 
         
            -
                                    </div>''',                      
         
     | 
| 227 | 
         
            -
                                 examples=[["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/3_rick_gt.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
         
     | 
| 228 | 
         
            -
                                            ["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/ex01_whisper_00359.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
         
     | 
| 229 | 
         
            -
                                           ["Hi there, I'm your new voice clone. Try your best to upload quality audio", "./example/female.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
         
     | 
| 230 | 
         
            -
                                           ["Hello I'm HierSpeech++", "./example/reference_1.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
         
     | 
| 231 | 
         
            -
                                           ]
         
     | 
| 232 | 
         
            -
                                )
         
     | 
| 233 | 
         
            -
                demo_play.launch(share=True, server_port=8888)
         
     | 
| 234 | 
         
            -
             
     | 
| 235 | 
         
            -
            if __name__ == '__main__':
         
     | 
| 236 | 
         
            -
                main()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |