File size: 641 Bytes
43ddd05
b01556d
 
 
43ddd05
 
b01556d
43ddd05
2cf85c2
 
b01556d
 
 
 
 
 
43ddd05
a4cdb6c
bda8d2f
de7f225
a4cdb6c
9e16be5
de7f225
43ddd05
 
4e2a9b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from huggingface_hub import from_pretrained_keras
import pandas as pd
import numpy as np


model = from_pretrained_keras("keras-io/timeseries_transformer_classification")

def detect_issue(df):
  #df = pd.read_csv('sample.csv',header=None)
  pred = model.predict(df)[0]
  problem = 'No problem'
  if(np.argmax(pred)==1):
    problem = 'Engine problem'
  return problem, pred[1]
  

iface = gr.Interface(detect_issue,"dataframe",
	outputs=[
	        gr.outputs.Textbox(label="Engine issue"),
       		gr.outputs.Textbox(label="Engine issue score")], examples=["sample.csv"]
#	examples = ["sample.csv"],
)


iface.launch()