joheras's picture
app
14fa378
raw
history blame
760 Bytes
import gradio as gr
from huggingface_hub import from_pretrained_keras
import pandas as pd
import numpy as np
model = from_pretrained_keras("keras-io/timeseries_transformer_classification")
def detect_issue(file):
df = pd.read_csv(file,header=None)
preds = model.predict(df)
result = []
for i,pred in enumerate(preds):
result.append(['Sample ' + str(i+1), np.argmax(pred),pred[np.argmax(pred)]]
return pd.DataFrame(result,header=['Sample','class','confidence']
iface = gr.Interface(detect_issue,gr.inputs.File(label="csv file"),
"dataframe",
#outputs=[
# gr.outputs.Textbox(label="Engine issue"),
# gr.outputs.Textbox(label="Engine issue score")],
examples=["sample.csv"]
# examples = ["sample.csv"],
)
iface.launch()