import gradio as gr from huggingface_hub import from_pretrained_keras import pandas as pd import numpy as np model = from_pretrained_keras("keras-io/timeseries_transformer_classification") def detect_issue(df): #df = pd.read_csv('sample.csv',header=None) pred = model.predict(df)[0] problem = 'No problem' if(np.argmax(pred)==1): problem = 'Engine problem' return problem, pred[1] iface = gr.Interface(detect_issue,"dataframe", outputs=[ gr.outputs.Textbox(label="Engine issue"), gr.outputs.Textbox(label="Engine issue score")], examples=["sample.csv"] # examples = ["sample.csv"], ) iface.launch()