Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from huggingface_hub import hf_hub_download | |
| from modeling.BaseModel import BaseModel | |
| from modeling import build_model | |
| from utilities.distributed import init_distributed | |
| from utilities.arguments import load_opt_from_config_files | |
| from utilities.constants import BIOMED_CLASSES | |
| from inference_utils.inference import interactive_infer_image | |
| def overlay_masks(image, masks, colors): | |
| overlay = image.copy() | |
| overlay = np.array(overlay, dtype=np.uint8) | |
| for mask, color in zip(masks, colors): | |
| overlay[mask > 0] = (overlay[mask > 0] * 0.4 + np.array(color) * 0.6).astype( | |
| np.uint8 | |
| ) | |
| return Image.fromarray(overlay) | |
| def generate_colors(n): | |
| cmap = plt.get_cmap("tab10") | |
| colors = [tuple(int(255 * val) for val in cmap(i)[:3]) for i in range(n)] | |
| return colors | |
| def init_model(): | |
| # Download model | |
| model_file = hf_hub_download( | |
| repo_id="microsoft/BiomedParse", | |
| filename="biomedparse_v1.pt", | |
| token=os.getenv("HF_TOKEN"), | |
| ) | |
| # Initialize model | |
| conf_files = "configs/biomedparse_inference.yaml" | |
| opt = load_opt_from_config_files([conf_files]) | |
| opt = init_distributed(opt) | |
| model = BaseModel(opt, build_model(opt)).from_pretrained(model_file).eval().cuda() | |
| with torch.no_grad(): | |
| model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings( | |
| BIOMED_CLASSES + ["background"], is_eval=True | |
| ) | |
| return model | |
| def predict(image, prompts): | |
| if not prompts: | |
| return None | |
| # Convert string input to list | |
| prompts = [p.strip() for p in prompts.split(",")] | |
| # Convert to RGB if needed | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| # Get predictions | |
| pred_mask = interactive_infer_image(model, image, prompts) | |
| # Generate visualization | |
| colors = generate_colors(len(prompts)) | |
| pred_overlay = overlay_masks( | |
| image, [1 * (pred_mask[i] > 0.5) for i in range(len(prompts))], colors | |
| ) | |
| return pred_overlay | |
| def run(): | |
| global model | |
| model = init_model() | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Image(type="pil", label="Input Image"), | |
| gr.Textbox( | |
| label="Prompts", | |
| placeholder="Enter prompts separated by commas (e.g., neoplastic cells, inflammatory cells)", | |
| ), | |
| ], | |
| outputs=gr.Image(type="pil", label="Prediction"), | |
| title="BiomedParse Demo", | |
| description="Upload a biomedical image and enter prompts (separated by commas) to detect specific features.", | |
| examples=[ | |
| ["examples/144DME_as_F.jpeg", "edema"], | |
| ["examples/C3_EndoCV2021_00462.jpg", "polyp"], | |
| ["examples/covid_1585.png", "left lung"], | |
| ["examples/covid_1585.png", "right lung"], | |
| ["examples/covid_1585.png", "COVID-19 infection"], | |
| ["examples/ISIC_0015551.jpg", "lesion"], | |
| ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "lung nodule"], | |
| ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "COVID-19 infection"], | |
| [ | |
| "examples/Part_1_516_pathology_breast.png", | |
| "connective tissue cells", | |
| ], | |
| [ | |
| "examples/Part_1_516_pathology_breast.png", | |
| "neoplastic cells", | |
| ], | |
| [ | |
| "examples/Part_1_516_pathology_breast.png", | |
| "neoplastic cells, inflammatory cells", | |
| ], | |
| ["examples/T0011.jpg", "optic disc"], | |
| ["examples/T0011.jpg", "optic cup"], | |
| ["examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png", "glioma"], | |
| ], | |
| ) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |
| if __name__ == "__main__": | |
| run() | |