Spaces:
Runtime error
Runtime error
| # -------------------------------------------------------- | |
| # X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Written by Xueyan Zou ([email protected]), Ziyi Dou, Jianwei Yang | |
| # -------------------------------------------------------- | |
| from typing import Tuple | |
| import random | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| import numpy as np | |
| from timm.models.layers import trunc_normal_ | |
| from nltk.stem.lancaster import LancasterStemmer | |
| from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode | |
| from detectron2.utils.memory import retry_if_cuda_oom | |
| from detectron2.data import MetadataCatalog | |
| from .build import register_model | |
| from ..utils import configurable, get_class_names | |
| from ..vision.backbone import build_backbone, Backbone | |
| from ..body import build_xdecoder_head | |
| from ..modules import sem_seg_postprocess, SetCriterion, HungarianMatcher, bbox_postprocess | |
| from ..language import build_language_encoder | |
| from ..language.loss import vl_similarity, image_text_contrastive_loss_queue | |
| from utilities.prompt_engineering import prompt_engineering | |
| from utilities.constants import COCO_PANOPTIC_CLASSES | |
| st = LancasterStemmer() | |
| class GeneralizedXdecoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| backbone: Backbone, | |
| sem_seg_head: nn.Module, | |
| criterion: nn.Module, | |
| losses: dict, | |
| num_queries: int, | |
| object_mask_threshold: float, | |
| overlap_threshold: float, | |
| metadata, | |
| task_switch: dict, | |
| phrase_prob: float, | |
| size_divisibility: int, | |
| sem_seg_postprocess_before_inference: bool, | |
| pixel_mean: Tuple[float], | |
| pixel_std: Tuple[float], | |
| # inference | |
| semantic_on: bool, | |
| panoptic_on: bool, | |
| instance_on: bool, | |
| test_topk_per_image: int, | |
| train_dataset_name: str, | |
| retrieval_emsemble: bool, | |
| backbone_dim: int, | |
| dim_proj: int, | |
| ): | |
| """ | |
| Args: | |
| backbone: a backbone module, must follow detectron2's backbone interface | |
| sem_seg_head: a module that predicts semantic segmentation from backbone features | |
| criterion: a module that defines the loss | |
| num_queries: int, number of queries | |
| object_mask_threshold: float, threshold to filter query based on classification score | |
| for panoptic segmentation inference | |
| overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
| metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
| segmentation inference | |
| size_divisibility: Some backbones require the input height and width to be divisible by a | |
| specific integer. We can use this to override such requirement. | |
| sem_seg_postprocess_before_inference: whether to resize the prediction back | |
| to original input size before semantic segmentation inference or after. | |
| For high-resolution dataset like Mapillary, resizing predictions before | |
| inference will cause OOM error. | |
| pixel_mean, pixel_std: list or tuple with #channels element, representing | |
| the per-channel mean and std to be used to normalize the input image | |
| semantic_on: bool, whether to output semantic segmentation prediction | |
| instance_on: bool, whether to output instance segmentation prediction | |
| panoptic_on: bool, whether to output panoptic segmentation prediction | |
| test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
| """ | |
| super().__init__() | |
| self.backbone = backbone | |
| self.sem_seg_head = sem_seg_head | |
| self.criterion = criterion | |
| self.losses = losses | |
| self.num_queries = num_queries | |
| self.overlap_threshold = overlap_threshold | |
| self.object_mask_threshold = object_mask_threshold | |
| self.metadata = metadata | |
| if size_divisibility < 0: | |
| # use backbone size_divisibility if not set | |
| size_divisibility = self.backbone.size_divisibility | |
| self.size_divisibility = size_divisibility | |
| self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
| self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
| self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
| # additional args | |
| self.semantic_on = semantic_on | |
| self.instance_on = instance_on | |
| self.panoptic_on = panoptic_on | |
| # caption argument | |
| self.task_switch = task_switch | |
| self.phrase_prob = phrase_prob | |
| self.test_topk_per_image = test_topk_per_image | |
| self.train_class_names = get_class_names(train_dataset_name) | |
| self.retrieval_emsemble = retrieval_emsemble | |
| # backbone itc loss | |
| if task_switch['retrieval'] and retrieval_emsemble: | |
| self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj)) | |
| trunc_normal_(self.backbone_proj, std=.02) | |
| if not self.semantic_on: | |
| assert self.sem_seg_postprocess_before_inference | |
| def from_config(cls, cfg): | |
| enc_cfg = cfg['MODEL']['ENCODER'] | |
| dec_cfg = cfg['MODEL']['DECODER'] | |
| # Loss parameters: | |
| deep_supervision = dec_cfg['DEEP_SUPERVISION'] | |
| no_object_weight = dec_cfg['NO_OBJECT_WEIGHT'] | |
| # loss weights, switcher for task, and top layers to compute loss | |
| loss_weights = {'mask': {'ce': dec_cfg['CLASS_WEIGHT'], 'dice': dec_cfg['DICE_WEIGHT'], 'bce': dec_cfg['MASK_WEIGHT']}, | |
| 'bbox': {'l1': dec_cfg['BBOX_WEIGHT'], 'giou': dec_cfg['GIOU_WEIGHT']}, | |
| 'caption': dec_cfg['CAPTION_WEIGHT'], | |
| 'captioning': dec_cfg['CAPTIONING_WEIGHT'], | |
| 'retrieval': {'decoder': dec_cfg['RETRIEVAL_WEIGHT'], 'backbone': dec_cfg['BACKBONER_WEIGHT']}, | |
| 'grounding': {'ce': dec_cfg['GCLASS_WEIGHT'], 'dice': dec_cfg['GDICE_WEIGHT'], 'bce': dec_cfg['GMASK_WEIGHT']}} | |
| task_switch = {'bbox': dec_cfg.get('DETECTION', False), | |
| 'mask': dec_cfg.get('MASK', True), | |
| 'caption': dec_cfg['CAPTION'].get('ENABLED', False), | |
| 'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False), | |
| 'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False), | |
| 'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)} | |
| top_x_layers = {'mask': dec_cfg.get('TOP_MASK_LAYERS', 10), | |
| 'caption': dec_cfg.get('TOP_CAPTION_LAYERS', 10), | |
| 'captioning': dec_cfg.get('TOP_CAPTIONING_LAYERS', 10), | |
| 'retrieval': dec_cfg.get('TOP_RETRIEVAL_LAYERS', 10), | |
| 'grounding': dec_cfg.get('TOP_GROUNDING_LAYERS', 10),} | |
| # build model | |
| extra = {'task_switch': task_switch} | |
| backbone = build_backbone(cfg) | |
| lang_encoder = build_language_encoder(cfg) | |
| sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra) | |
| # building criterion | |
| matcher = HungarianMatcher( | |
| cost_class=loss_weights['mask']['ce'], | |
| cost_mask=loss_weights['mask']['bce'], | |
| cost_dice=loss_weights['mask']['dice'], | |
| num_points=dec_cfg['TRAIN_NUM_POINTS'], | |
| ) | |
| # init weight dict and criterion loss functions. | |
| losses = {'seg': [], 'vlp': []} | |
| if task_switch['mask']: | |
| losses['seg'] += ["labels", "masks"] | |
| if task_switch['caption']: | |
| losses['seg'] += ["captions"] | |
| if task_switch['grounding']: | |
| losses['seg'] += ["groundings"] | |
| if task_switch['captioning']: | |
| losses['vlp'] += ["captionings"] | |
| if task_switch['retrieval']: | |
| losses['vlp'] += ["retrievals"] | |
| weight_dict = {} | |
| for key, turn_on in task_switch.items(): | |
| if turn_on: | |
| if isinstance(loss_weights[key], dict): | |
| # HACK it should support bbox in the future | |
| for key_, weight in loss_weights[key].items(): | |
| weight_dict["loss_{}_{}_0".format(key, key_)] = weight # NOTE: hard code for segmentation that has multiple loss | |
| else: | |
| weight_dict["loss_{}_0".format(key)] = loss_weights[key] | |
| # generate full weight dict and remove not computed layers. | |
| if deep_supervision: | |
| dec_layers = dec_cfg['DEC_LAYERS'] | |
| aux_weight_dict = {} | |
| for i in range(dec_layers - 1): | |
| for k, v in weight_dict.items(): | |
| if (i+1) > (top_x_layers[k.split('_')[1]] - 1): | |
| continue | |
| aux_weight_dict.update({k.replace('_0', f"_{i+1}"): v}) | |
| weight_dict.update(aux_weight_dict) | |
| grd_weight = {'text': dec_cfg['GROUNDING']['TEXT_WEIGHT'], 'class': dec_cfg['GROUNDING']['CLASS_WEIGHT']} | |
| # generate critenrion for loss function. | |
| criterion = SetCriterion( | |
| sem_seg_head.num_classes, | |
| matcher=matcher, | |
| weight_dict=weight_dict, | |
| top_x_layers=top_x_layers, | |
| eos_coef=no_object_weight, | |
| losses=[], | |
| num_points=dec_cfg['TRAIN_NUM_POINTS'], | |
| oversample_ratio=dec_cfg['OVERSAMPLE_RATIO'], | |
| importance_sample_ratio=dec_cfg['IMPORTANCE_SAMPLE_RATIO'], | |
| grounding_weight=grd_weight, | |
| ) | |
| # extra logistic | |
| train_dataset_name = cfg['DATASETS']['TRAIN'][0] # HACK for only one training set. | |
| phrase_prob = dec_cfg['CAPTION'].get('PHRASE_PROB', 0.5) | |
| return { | |
| "backbone": backbone, | |
| "sem_seg_head": sem_seg_head, | |
| "criterion": criterion, | |
| "losses": losses, | |
| "num_queries": dec_cfg['NUM_OBJECT_QUERIES'], | |
| "object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'], | |
| "overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'], | |
| "metadata": MetadataCatalog.get(cfg['DATASETS']['TRAIN'][0]), | |
| "size_divisibility": dec_cfg['SIZE_DIVISIBILITY'], | |
| "sem_seg_postprocess_before_inference": ( | |
| dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE'] | |
| or dec_cfg['TEST']['PANOPTIC_ON'] | |
| or dec_cfg['TEST']['INSTANCE_ON'] | |
| ), | |
| "pixel_mean": cfg['INPUT']['PIXEL_MEAN'], | |
| "pixel_std": cfg['INPUT']['PIXEL_STD'], | |
| "task_switch": task_switch, | |
| "phrase_prob": phrase_prob, | |
| # inference | |
| "semantic_on": dec_cfg['TEST']['SEMANTIC_ON'], | |
| "instance_on": dec_cfg['TEST']['INSTANCE_ON'], | |
| "panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'], | |
| "test_topk_per_image": cfg['COCO']['TEST']['DETECTIONS_PER_IMAGE'], | |
| "train_dataset_name": train_dataset_name, | |
| "retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'], | |
| "backbone_dim": cfg['MODEL']['BACKBONE_DIM'], | |
| "dim_proj": cfg['MODEL']['DIM_PROJ'], | |
| } | |
| def device(self): | |
| return self.pixel_mean.device | |
| def forward(self, batched_inputs, mode=None): | |
| """ | |
| Args: | |
| batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
| Each item in the list contains the inputs for one image. | |
| For now, each item in the list is a dict that contains: | |
| * "image": Tensor, image in (C, H, W) format. | |
| * "instances": per-region ground truth | |
| * Other information that's included in the original dicts, such as: | |
| "height", "width" (int): the output resolution of the model (may be different | |
| from input resolution), used in inference. | |
| Returns: | |
| list[dict]: | |
| each dict has the results for one image. The dict contains the following keys: | |
| * "sem_seg": | |
| A Tensor that represents the | |
| per-pixel segmentation prediced by the head. | |
| The prediction has shape KxHxW that represents the logits of | |
| each class for each pixel. | |
| * "panoptic_seg": | |
| A tuple that represent panoptic output | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
| segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
| Each dict contains keys "id", "category_id", "isthing". | |
| """ | |
| if self.training: | |
| losses = {} | |
| if self.task_switch['mask']: | |
| losses_seg = self.forward_seg(batched_inputs['coco']) | |
| losses.update(losses_seg) | |
| if self.task_switch['retrieval'] or self.task_switch['captioning']: | |
| losses_vlp = self.forward_vlp(batched_inputs['vlp']) | |
| losses.update(losses_vlp) | |
| for k in list(losses.keys()): | |
| if k in self.criterion.weight_dict: | |
| losses[k] *= self.criterion.weight_dict[k] | |
| else: # remove this loss if not specified in `weight_dict` | |
| losses.pop(k) | |
| return losses | |
| else: | |
| if mode == 'retrieval': | |
| return self.evaluate_retrieval(batched_inputs) | |
| elif mode == 'captioning': | |
| return self.evaluate_captioning(batched_inputs) | |
| elif mode == 'classification': | |
| return self.evaluate_classification(batched_inputs) | |
| elif mode == 'grounding_refcoco': | |
| return self.evaluate_grounding(batched_inputs, mode) | |
| else: | |
| return self.evaluate(batched_inputs) | |
| def forward_seg(self, batched_inputs): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False) | |
| extra = {} | |
| # mask classification target | |
| if "instances" in batched_inputs[0]: | |
| # input bounding box is checked to be correct. | |
| targets = self.prepare_targets(batched_inputs, images) | |
| if self.task_switch['grounding']: | |
| grounding_tokens = [x['grounding_query_embs'] for x in targets] # need to pad for more than one grounding token | |
| grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens) | |
| extra['grounding_tokens'] = grounding_tokens | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, extra=extra) | |
| _outputs = {} | |
| for key, value in outputs.items(): | |
| if key == 'pred_logits': | |
| _outputs[key] = value[:,:self.num_queries-1] | |
| elif key == 'pred_masks': | |
| _outputs[key] = value[:,:self.num_queries-1] | |
| if self.task_switch['grounding']: | |
| _outputs['pred_gmasks'] = value[:,self.num_queries:2*self.num_queries-1] | |
| elif key == 'pred_captions': | |
| _outputs[key] = value[:,:self.num_queries-1] | |
| if self.task_switch['grounding']: | |
| _outputs['pred_gtexts'] = value[:,self.num_queries:2*self.num_queries-1] | |
| elif key == 'aux_outputs': | |
| _outputs[key] = [] | |
| for i in range(len(value)): | |
| _outputs[key] += [{}] | |
| for _key, _value in value[i].items(): | |
| if _key == 'pred_logits': | |
| _outputs[key][i][_key] = _value[:,:self.num_queries-1] | |
| elif _key == 'pred_masks': | |
| _outputs[key][i][_key] = _value[:,:self.num_queries-1] | |
| if self.task_switch['grounding']: | |
| _outputs[key][i]['pred_gmasks'] = _value[:,self.num_queries:2*self.num_queries-1] | |
| elif _key == 'pred_captions': | |
| _outputs[key][i][_key] = _value[:,:self.num_queries-1] | |
| if self.task_switch['grounding']: | |
| _outputs[key][i]['pred_gtexts'] = _value[:,self.num_queries:2*self.num_queries-1] | |
| outputs = _outputs | |
| extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale, | |
| 'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default'))} | |
| # bipartite matching-based loss | |
| self.criterion.losses = self.losses['seg'] # seg criterion losses | |
| losses = self.criterion(outputs, targets, extra) | |
| del outputs | |
| del _outputs | |
| return losses | |
| def forward_vlp(self, batched_inputs): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| targets_vlp = self.prepare_vlp_targets(batched_inputs, images.tensor.device) | |
| extra = {"token_embedding": self.sem_seg_head.predictor.lang_encoder.lang_encoder.token_embedding, | |
| "lang_encoder": self.sem_seg_head.predictor.lang_encoder, | |
| "training": self.training} | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, target_queries=None, target_vlp=targets_vlp, task='vlp', extra=extra) | |
| for key, value in outputs.items(): | |
| if key == 'pred_captionings': | |
| outputs[key] = value | |
| elif key == 'pred_captions': | |
| # outputs[key] = value[:,-1:] | |
| outputs[key] = value | |
| elif key == 'aux_outputs': | |
| outputs[key] = [] | |
| for i in range(len(value)): | |
| outputs[key] += [{}] | |
| for _key, _value in value[i].items(): | |
| if _key == 'pred_captions': | |
| # outputs[key][i][_key] = _value[:,-1:] | |
| outputs[key][i][_key] = _value | |
| elif _key == 'pred_captionings': | |
| outputs[key][i][_key] = _value | |
| self.criterion.losses = self.losses['vlp'] # seg criterion losses | |
| losses = self.criterion.forward_vlp(outputs, targets_vlp, extra) | |
| del outputs | |
| if self.task_switch['retrieval'] and self.retrieval_emsemble: | |
| # compute backbone vlp. | |
| v_emb = features['res5'] | |
| bs,nc,_,_ = v_emb.shape | |
| v_emb = v_emb.reshape(bs,nc,-1) | |
| v_emb = F.adaptive_avg_pool1d(v_emb, 1).reshape(bs,nc) @ self.backbone_proj | |
| t_emb = torch.cat([x['caption_proj'] for x in targets_vlp], dim=0) | |
| loss_contrast = image_text_contrastive_loss_queue(v_emb, t_emb, self.sem_seg_head.predictor.lang_encoder, None) | |
| losses['loss_retrieval_backbone_0'] = loss_contrast | |
| return losses | |
| def evaluate(self, batched_inputs): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| img_bs = images.tensor.shape[0] | |
| targets = targets_grounding = queries_grounding = None | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
| mask_cls_results = outputs["pred_logits"] | |
| mask_pred_results = outputs["pred_masks"] | |
| box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))] | |
| caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))] | |
| # upsample masks | |
| mask_pred_results = F.interpolate( | |
| mask_pred_results, | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bicubic", | |
| align_corners=False, | |
| antialias=True | |
| ) | |
| input_size = mask_pred_results.shape[-2:] | |
| keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False | |
| del outputs | |
| processed_results = [] | |
| for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip( | |
| mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| processed_results.append({}) | |
| if self.sem_seg_postprocess_before_inference: | |
| mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
| mask_pred_result, image_size, height, width | |
| ) | |
| mask_cls_result = mask_cls_result.to(mask_pred_result) | |
| # semantic segmentation inference | |
| if self.semantic_on: | |
| r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd) | |
| if not self.sem_seg_postprocess_before_inference: | |
| r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
| processed_results[-1]["sem_seg"] = r | |
| # panoptic segmentation inference | |
| if self.panoptic_on: | |
| panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
| processed_results[-1]["panoptic_seg"] = panoptic_r | |
| # instance segmentation inference | |
| if self.instance_on: | |
| if self.task_switch['bbox']: | |
| box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width) | |
| instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result) | |
| processed_results[-1]["instances"] = instance_r | |
| if self.task_switch['caption']: | |
| processed_results[-1]["captions"] = caption_pred_result | |
| processed_results[-1]["masks"] = mask_pred_result | |
| return processed_results | |
| def evaluate_retrieval(self, batched_inputs): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| img_bs = images.tensor.shape[0] | |
| targets = targets_grounding = queries_grounding = None | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
| v_emb_it = outputs['pred_captions'][:,-1] | |
| # compute backbone score | |
| if self.task_switch['retrieval'] and self.retrieval_emsemble: | |
| _v_emb_it = features['res5'] | |
| bs,nc,_,_ = _v_emb_it.shape | |
| _v_emb_it = _v_emb_it.reshape(bs,nc,-1) | |
| _v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj | |
| processed_results = [] | |
| for idx, batch_data in enumerate(batched_inputs): | |
| caption_ids = [] | |
| t_emb_its = [] | |
| processed_results.append({}) | |
| for caption in batch_data['captions']: | |
| lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption) | |
| t_emb_it = lang_results['class_emb'] | |
| caption_ids.append(batch_data['image_id']) | |
| t_emb_its.append(t_emb_it) | |
| t_emb_it = torch.cat(t_emb_its, dim=0) | |
| image_embeds = [v_emb_it[idx].unsqueeze(0)] | |
| if self.task_switch['retrieval'] and self.retrieval_emsemble: | |
| image_embeds += [_v_emb_it[idx].unsqueeze(0)] | |
| caption_results = { | |
| 'image_embeds': image_embeds, | |
| 'text_embeds': t_emb_it, | |
| 'caption_ids': caption_ids, | |
| 'image_ids': batch_data['image_id'], | |
| } | |
| processed_results[-1]["caption"] = caption_results | |
| del features | |
| return processed_results | |
| def evaluate_captioning(self, batched_inputs): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| img_bs = images.tensor.shape[0] | |
| if not hasattr(self, 'start_token'): | |
| self.start_token = torch.tensor([[49406]*77], device=self.device) | |
| targets = targets_grounding = queries_grounding = None | |
| features = self.backbone(images.tensor) | |
| captioning_mask = None | |
| if 'captioning_mask' in batched_inputs[-1]: | |
| captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs]) | |
| outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra={'start_token': self.start_token, 'captioning_mask': captioning_mask}) | |
| processed_results = [] | |
| for idx, batch_data in enumerate(batched_inputs): | |
| processed_results.append({}) | |
| processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx] | |
| processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0] | |
| processed_results[-1]["image_id"] = batched_inputs[idx]['image_id'] | |
| return processed_results | |
| def evaluate_classification(self, batched_inputs): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| img_bs = images.tensor.shape[0] | |
| targets = targets_grounding = queries_grounding = None | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
| processed_results = [] | |
| for idx, batch_data in enumerate(batched_inputs): | |
| processed_results.append({}) | |
| processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1] | |
| return processed_results | |
| def evaluate_grounding_baseline(self, batched_inputs, mode): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| img_bs = images.tensor.shape[0] | |
| targets = targets_grounding = queries_grounding = None | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
| mask_pred_results = outputs["pred_masks"] | |
| caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))] | |
| # upsample masks | |
| mask_pred_results = F.interpolate( | |
| mask_pred_results, | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bicubic", | |
| align_corners=False, | |
| antialias=True | |
| ) | |
| processed_results = [] | |
| for mask_pred_result, caption_pred_result, input_per_image, image_size in zip( | |
| mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| processed_results.append({}) | |
| mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
| mask_pred_result, image_size, height, width | |
| )[:-1] | |
| texts_all = input_per_image['groundings']['texts'] | |
| grd_masks = [] | |
| for texts in texts_all: | |
| if mode == 'grounding_refcoco': | |
| self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True) | |
| elif mode == 'grounding_phrasecut': | |
| self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False) | |
| t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t() | |
| v_emb = caption_pred_result[:-1] | |
| v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| vt_sim = v_emb @ t_emb | |
| max_id = vt_sim.max(0)[1][0] | |
| grd_masks += [mask_pred_result[max_id]] | |
| processed_results[-1]['grounding_mask'] = torch.stack(grd_masks) | |
| return processed_results | |
| def evaluate_grounding(self, batched_inputs, mode): | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| extra = {} | |
| # mask_pred_results = [] | |
| # for idx, batch_per_image in enumerate(batched_inputs): | |
| # grd_texts = batch_per_image['groundings']['texts'] | |
| # grd_masks = [] | |
| # for anno_text in grd_texts: | |
| # gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) | |
| # token_emb = gtext['token_emb'] | |
| # tokens = gtext['tokens'] | |
| # grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] | |
| # extra['grounding_tokens'] = grd_emb[:,None] | |
| # assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" | |
| # features = self.backbone(images.tensor) | |
| # outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
| # pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1] | |
| # v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1] | |
| # t_emb = grd_emb[-1:] | |
| # t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| # v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| # temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
| # out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
| # matched_id = out_prob.max(0)[1] | |
| # grd_masks += [pred_gmasks[matched_id,:,:]] | |
| # mask_pred_results += [torch.cat(grd_masks)] | |
| # comment for multi object inference. | |
| mask_pred_results = [] | |
| for idx, batch_per_image in enumerate(batched_inputs): | |
| grd_texts = batch_per_image['groundings']['texts'] | |
| grd_texts = [x[0] for x in grd_texts] | |
| gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
| token_emb = gtext['token_emb'] | |
| tokens = gtext['tokens'] | |
| query_emb = token_emb[tokens['attention_mask'].bool()] | |
| extra['grounding_tokens'] = query_emb[:,None] | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
| pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1] | |
| v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1] | |
| t_emb = gtext['class_emb'] | |
| t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
| out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
| matched_id = out_prob.max(0)[1] | |
| mask_pred_results += [pred_gmasks[matched_id,:,:]] | |
| for i in range(len(mask_pred_results)): | |
| # upsample masks | |
| mask_pred_results[i] = F.interpolate( | |
| mask_pred_results[i][None,], | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bicubic", | |
| align_corners=False, | |
| antialias=True | |
| )[0] | |
| processed_results = [] | |
| for mask_pred_result, input_per_image, image_size in zip( | |
| mask_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| processed_results.append({}) | |
| mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
| mask_pred_result, image_size, height, width | |
| ) | |
| processed_results[-1]['grounding_mask'] = mask_pred_result | |
| # compute bbox | |
| # bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes() | |
| # bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
| # processed_results[-1]['grounding_box'] = bbox | |
| return processed_results | |
| def prepare_vlp_targets(self, batched_inputs, device): | |
| input_ids = [] | |
| attention_mask = [] | |
| for cnt, x in enumerate(batched_inputs): | |
| captions = x['captions'] | |
| randid = random.randint(0, len(captions)-1) | |
| input_ids += x['tokens']['input_ids'][randid:randid+1] | |
| attention_mask += x['tokens']['attention_mask'][randid:randid+1] | |
| input_ids = torch.stack(input_ids) | |
| attention_mask = torch.stack(attention_mask) | |
| tokens = {"input_ids": input_ids, "attention_mask": attention_mask} | |
| lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True) | |
| target_vlp = [] | |
| for cnt, x in enumerate(batched_inputs): | |
| target_dict = {} | |
| target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1] | |
| target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1] | |
| target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1] | |
| target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1] | |
| target_vlp.append(target_dict) | |
| return target_vlp | |
| def prepare_targets(self, batched_inputs, images): | |
| h_pad, w_pad = images.tensor.shape[-2:] | |
| new_targets = [] | |
| for idx, batch_per_image in enumerate(batched_inputs): | |
| targets_per_image = batch_per_image["instances"].to(self.device) | |
| # pad gt | |
| gt_masks = targets_per_image.gt_masks | |
| padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
| padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
| gt_boxes = targets_per_image.gt_boxes.tensor | |
| ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:] | |
| gt_boxes = gt_boxes / ratio | |
| xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1] | |
| gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0) | |
| target_dict = { | |
| "labels": targets_per_image.gt_classes, | |
| "is_things": targets_per_image.is_things, | |
| "masks": padded_masks, | |
| "boxes": gt_boxes | |
| } | |
| if self.task_switch['caption']: | |
| caption = batch_per_image["captions"] | |
| caption_noun = batch_per_image["captions_noun"] | |
| rand_index = random.randint(0, len(caption)-1) | |
| text = caption[rand_index] | |
| nouns = caption_noun[rand_index] | |
| noun_captions = [prompt_engineering(noun, topk=10000, suffix='.') for noun in nouns] + [text] | |
| self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(noun_captions, is_eval=False, name='caption_noun', prompt=False) | |
| ctext = getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption_noun')) | |
| target_dict["captions"] = ctext | |
| target_dict["captions_hash"] = [(hash(st.stem(txt)) % 10**16) for txt in (nouns + [text])] | |
| target_dict["labels_hash"] = [(hash(st.stem(COCO_PANOPTIC_CLASSES[label_id].replace('-other','').replace('-merged','').replace('-stuff',''))) % 10**16) for label_id in target_dict['labels']] | |
| if self.task_switch['grounding']: | |
| grd_masks = batch_per_image['groundings']['masks'] | |
| grd_texts = batch_per_image['groundings']['texts'] | |
| grd_hash = batch_per_image['groundings']['hash'] | |
| grd_task = batch_per_image['groundings']['mode'] | |
| if len(grd_masks) == 0: | |
| padded_masks = None | |
| else: | |
| padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device) | |
| padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks | |
| gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
| token_emb = gtext['token_emb'] | |
| tokens = gtext['tokens'] | |
| unique_hash_id = np.unique(grd_hash, return_index=True)[1] | |
| selected_mask = np.zeros(len(grd_hash)).astype(np.bool) | |
| selected_mask[unique_hash_id] = True | |
| selected_token_emb = token_emb[selected_mask] | |
| selected_attn_mask = tokens['attention_mask'][selected_mask] | |
| query_emb = selected_token_emb[selected_attn_mask.bool()] | |
| class_idx = tokens['attention_mask'].sum(dim=-1) - 1 | |
| class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist() | |
| class_emb = token_emb[class_idx] | |
| target_dict['grounding_masks'] = padded_masks | |
| target_dict['grounding_query_embs'] = query_emb | |
| target_dict['grounding_class_embs'] = class_emb | |
| target_dict['grounding_hash'] = grd_hash | |
| target_dict['grounding_task'] = grd_task | |
| new_targets.append(target_dict) | |
| return new_targets | |
| def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False): | |
| if keep_sem_bgd: | |
| mask_cls = F.softmax(mask_cls, dim=-1) | |
| else: | |
| mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
| mask_pred = mask_pred.sigmoid() | |
| semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
| return semseg | |
| def panoptic_inference(self, mask_cls, mask_pred): | |
| scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
| mask_pred = mask_pred.sigmoid() | |
| keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) | |
| cur_scores = scores[keep] | |
| cur_classes = labels[keep] | |
| cur_masks = mask_pred[keep] | |
| cur_mask_cls = mask_cls[keep] | |
| cur_mask_cls = cur_mask_cls[:, :-1] | |
| cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
| h, w = cur_masks.shape[-2:] | |
| panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
| segments_info = [] | |
| current_segment_id = 0 | |
| if cur_masks.shape[0] == 0: | |
| # We didn't detect any mask :( | |
| return panoptic_seg, segments_info | |
| else: | |
| # take argmax | |
| cur_mask_ids = cur_prob_masks.argmax(0) | |
| stuff_memory_list = {} | |
| thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {} | |
| for k in range(cur_classes.shape[0]): | |
| pred_class = cur_classes[k].item() | |
| isthing = pred_class in thing_dataset_id_to_contiguous_id.values() | |
| mask_area = (cur_mask_ids == k).sum().item() | |
| original_area = (cur_masks[k] >= 0.5).sum().item() | |
| mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
| if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
| if mask_area / original_area < self.overlap_threshold: | |
| continue | |
| # merge stuff regions | |
| if not isthing: | |
| if int(pred_class) in stuff_memory_list.keys(): | |
| panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
| continue | |
| else: | |
| stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
| current_segment_id += 1 | |
| panoptic_seg[mask] = current_segment_id | |
| segments_info.append( | |
| { | |
| "id": current_segment_id, | |
| "isthing": bool(isthing), | |
| "category_id": int(pred_class), | |
| } | |
| ) | |
| return panoptic_seg, segments_info | |
| def instance_inference(self, mask_cls, mask_pred, box_pred): | |
| # mask_pred is already processed to have the same shape as original input | |
| image_size = mask_pred.shape[-2:] | |
| # [Q, K] | |
| scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
| labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
| # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
| scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
| labels_per_image = labels[topk_indices] | |
| topk_indices = (topk_indices // self.sem_seg_head.num_classes) | |
| # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
| mask_pred = mask_pred[topk_indices] | |
| if box_pred is not None: | |
| box_pred = box_pred[topk_indices] | |
| # if this is panoptic segmentation, we only keep the "thing" classes | |
| if self.panoptic_on: | |
| thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {} | |
| keep = torch.zeros_like(scores_per_image).bool() | |
| for i, lab in enumerate(labels_per_image): | |
| keep[i] = lab in thing_dataset_id_to_contiguous_id.values() | |
| scores_per_image = scores_per_image[keep] | |
| labels_per_image = labels_per_image[keep] | |
| mask_pred = mask_pred[keep] | |
| if box_pred is not None: | |
| box_pred = box_pred[keep] | |
| result = Instances(image_size) | |
| # mask (before sigmoid) | |
| result.pred_masks = (mask_pred > 0).float() | |
| # result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
| # Uncomment the following to get boxes from masks (this is slow) | |
| if box_pred is not None: | |
| result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
| else: | |
| result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
| # calculate average mask prob | |
| mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
| result.scores = scores_per_image * mask_scores_per_image | |
| result.pred_classes = labels_per_image | |
| return result | |
| def get_xdecoder_model(cfg, **kwargs): | |
| return GeneralizedXdecoder(cfg) |