Spaces:
Sleeping
Sleeping
| # -------------------------------------------------------- | |
| # X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Modified by Xueyan Zou ([email protected]) | |
| # -------------------------------------------------------- | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/matcher.py | |
| """ | |
| Modules to compute the matching cost and solve the corresponding LSAP. | |
| """ | |
| import warnings | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from scipy.optimize import linear_sum_assignment | |
| from torch import nn | |
| from torch.cuda.amp import autocast | |
| from .point_features import point_sample | |
| from ..language.loss import vl_similarity | |
| def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor): | |
| """ | |
| Compute the DICE loss, similar to generalized IOU for masks | |
| Args: | |
| inputs: A float tensor of arbitrary shape. | |
| The predictions for each example. | |
| targets: A float tensor with the same shape as inputs. Stores the binary | |
| classification label for each element in inputs | |
| (0 for the negative class and 1 for the positive class). | |
| """ | |
| inputs = inputs.sigmoid() | |
| inputs = inputs.flatten(1) | |
| numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets) | |
| denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :] | |
| loss = 1 - (numerator + 1) / (denominator + 1) | |
| return loss | |
| batch_dice_loss_jit = torch.jit.script( | |
| batch_dice_loss | |
| ) # type: torch.jit.ScriptModule | |
| def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor): | |
| """ | |
| Args: | |
| inputs: A float tensor of arbitrary shape. | |
| The predictions for each example. | |
| targets: A float tensor with the same shape as inputs. Stores the binary | |
| classification label for each element in inputs | |
| (0 for the negative class and 1 for the positive class). | |
| Returns: | |
| Loss tensor | |
| """ | |
| hw = inputs.shape[1] | |
| pos = F.binary_cross_entropy_with_logits( | |
| inputs, torch.ones_like(inputs), reduction="none" | |
| ) | |
| neg = F.binary_cross_entropy_with_logits( | |
| inputs, torch.zeros_like(inputs), reduction="none" | |
| ) | |
| loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum( | |
| "nc,mc->nm", neg, (1 - targets) | |
| ) | |
| return loss / hw | |
| batch_sigmoid_ce_loss_jit = torch.jit.script( | |
| batch_sigmoid_ce_loss | |
| ) # type: torch.jit.ScriptModule | |
| class HungarianMatcher(nn.Module): | |
| """This class computes an assignment between the targets and the predictions of the network | |
| For efficiency reasons, the targets don't include the no_object. Because of this, in general, | |
| there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, | |
| while the others are un-matched (and thus treated as non-objects). | |
| """ | |
| def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0, spatial_cost = None): | |
| """Creates the matcher | |
| Params: | |
| cost_class: This is the relative weight of the classification error in the matching cost | |
| cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost | |
| cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost | |
| """ | |
| super().__init__() | |
| self.cost_class = cost_class | |
| self.cost_mask = cost_mask | |
| self.cost_dice = cost_dice | |
| self.num_points = num_points | |
| self.spatial_cost_class = cost_class | |
| self.spatial_cost_mask = cost_mask | |
| self.spatial_cost_dice = cost_dice | |
| assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0" | |
| def memory_efficient_forward(self, outputs, targets): | |
| """More memory-friendly matching""" | |
| bs, num_queries = outputs["pred_logits"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| indices = [] | |
| # Iterate through batch size | |
| for b in range(bs): | |
| out_prob = outputs["pred_logits"][b].softmax(-1) # [num_queries, num_classes] | |
| tgt_ids = targets[b]["labels"] | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob[:, tgt_ids] | |
| out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred] | |
| # gt masks are already padded when preparing target | |
| tgt_mask = targets[b]["masks"].to(out_mask) | |
| out_mask = out_mask[:, None] | |
| tgt_mask = tgt_mask[:, None] | |
| # all masks share the same set of points for efficient matching! | |
| point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) | |
| # get gt labels | |
| tgt_mask = point_sample( | |
| tgt_mask, | |
| point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| out_mask = point_sample( | |
| out_mask, | |
| point_coords.repeat(out_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| with autocast(enabled=False): | |
| out_mask = out_mask.float() | |
| tgt_mask = tgt_mask.float() | |
| # Compute the focal loss between masks | |
| cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) | |
| # Compute the dice loss betwen masks | |
| cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) | |
| # Final cost matrix | |
| C = ( | |
| self.cost_mask * cost_mask | |
| + self.cost_class * cost_class | |
| + self.cost_dice * cost_dice | |
| ) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ] | |
| def openimage_forward(self, outputs, targets, extra): | |
| """More memory-friendly matching""" | |
| bs, num_queries = outputs["pred_captions"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| neg_class_emb = extra['neg_class_emb'] | |
| neg_hash = extra['neg_hash'] | |
| _, unique_indices = np.unique(neg_hash.cpu().numpy(), return_index=True) | |
| neg_class_emb = neg_class_emb[unique_indices] | |
| neg_hash = neg_hash[unique_indices] | |
| indices = [] | |
| pred_logits = [] | |
| # Iterate through batch size | |
| for b in range(bs): | |
| _pos_class_emb = targets[b]['pos_class_emb'] | |
| _pos_hash = targets[b]['pos_hash'] | |
| _neg_overlap_pos = ~(neg_hash[..., None] == _pos_hash).any(-1) | |
| _neg_class_emb = neg_class_emb[_neg_overlap_pos] | |
| t_emb = torch.cat((_pos_class_emb, _neg_class_emb)) | |
| v_emb = outputs["pred_captions"][b] | |
| del _pos_class_emb | |
| del _neg_class_emb | |
| t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
| out_prob = vl_similarity(v_emb, t_emb, temperature=extra['lang_logit']) | |
| pred_logits += [out_prob] | |
| out_prob = out_prob.softmax(-1) | |
| tgt_ids = targets[b]["labels"] | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob[:, tgt_ids] | |
| out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred] | |
| # gt masks are already padded when preparing target | |
| tgt_mask = targets[b]["masks"].to(out_mask) | |
| out_mask = out_mask[:, None] | |
| tgt_mask = tgt_mask[:, None] | |
| # all masks share the same set of points for efficient matching! | |
| point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) | |
| # get gt labels | |
| tgt_mask = point_sample( | |
| tgt_mask, | |
| point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| out_mask = point_sample( | |
| out_mask, | |
| point_coords.repeat(out_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| with autocast(enabled=False): | |
| out_mask = out_mask.float() | |
| tgt_mask = tgt_mask.float() | |
| # Compute the focal loss between masks | |
| cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) | |
| # Compute the dice loss betwen masks | |
| cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) | |
| # Final cost matrix | |
| C = ( | |
| self.cost_mask * cost_mask | |
| + self.cost_class * cost_class | |
| + self.cost_dice * cost_dice | |
| ) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ], pred_logits | |
| def grounding_forward(self, outputs, targets, extra): | |
| """More memory-friendly matching""" | |
| bs, num_queries = outputs["pred_gmasks"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| indices = [] | |
| # Iterate through batch size | |
| for b in range(bs): | |
| out_prob = outputs["pred_logits"][b] | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob.softmax(dim=0) | |
| out_mask = outputs["pred_gmasks"][b] # [num_queries, H_pred, W_pred] | |
| # gt masks are already padded when preparing target | |
| tgt_mask = targets[b]["grounding_masks"].to(out_mask) | |
| out_mask = out_mask[:, None] | |
| tgt_mask = tgt_mask[:, None] | |
| # all masks share the same set of points for efficient matching! | |
| point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) | |
| # get gt labels | |
| tgt_mask = point_sample( | |
| tgt_mask, | |
| point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| out_mask = point_sample( | |
| out_mask, | |
| point_coords.repeat(out_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| with autocast(enabled=False): | |
| out_mask = out_mask.float() | |
| tgt_mask = tgt_mask.float() | |
| # Compute the focal loss between masks | |
| cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) | |
| # Compute the dice loss betwen masks | |
| cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) | |
| # Final cost matrix | |
| C = ( | |
| self.cost_mask * cost_mask | |
| + self.cost_class * cost_class | |
| + self.cost_dice * cost_dice | |
| ) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ] | |
| def spatial_forward(self, outputs, targets, extra): | |
| """More memory-friendly matching""" | |
| bs, num_queries = outputs["pred_smasks"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| indices = [] | |
| # Iterate through batch size | |
| for b in range(bs): | |
| out_mask = outputs["pred_smasks"][b] # [num_queries, H_pred, W_pred] | |
| # gt masks are already padded when preparing target | |
| tgt_mask = targets[b]["gt_spatial_masks"].to(out_mask) | |
| nd,ns = outputs["pred_pos_logits"][b].shape | |
| index_masking = 1-torch.eye(ns, device=out_mask.device, dtype=tgt_mask.dtype).repeat_interleave(nd//ns,dim=0) | |
| neg_masking = torch.zeros((nd,ns), device=out_mask.device, dtype=tgt_mask.dtype) | |
| neg_masking.masked_fill_(index_masking.bool(), -float('inf')) | |
| pos_masking = torch.zeros((nd,ns), device=out_mask.device, dtype=tgt_mask.dtype) | |
| pos_masking.masked_fill_(index_masking.bool(), float('inf')) | |
| out_prob = (outputs["pred_pos_logits"][b]+neg_masking)[:,:len(tgt_mask)] # remove redundant predictions for padding | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob.softmax(dim=0) | |
| out_mask = out_mask[:, None] | |
| tgt_mask = tgt_mask[:, None] | |
| # all masks share the same set of points for efficient matching! | |
| point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) | |
| # get gt labels | |
| tgt_mask = point_sample( | |
| tgt_mask, | |
| point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| out_mask = point_sample( | |
| out_mask, | |
| point_coords.repeat(out_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| with autocast(enabled=False): | |
| out_mask = out_mask.float() | |
| tgt_mask = tgt_mask.float() | |
| # Compute the focal loss between masks | |
| cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) + pos_masking[:,:len(tgt_mask)] | |
| # Compute the dice loss betwen masks | |
| cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) + pos_masking[:,:len(tgt_mask)] | |
| # Final cost matrix | |
| C = ( | |
| self.spatial_cost_mask * cost_mask | |
| + self.spatial_cost_class * cost_class | |
| + self.spatial_cost_dice * cost_dice | |
| ) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ] | |
| def spatial_forward_pn(self, outputs, targets, extra): | |
| """More memory-friendly matching""" | |
| bs, num_queries = outputs["pred_smasks"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| fp_mask = extra['false_positive_mask'] | |
| gt_mask = torch.stack([targets[b]["gt_spatial_masks"] for b in range(bs)]) | |
| indices = [] | |
| # Iterate through batch size | |
| for b in range(bs): | |
| out_prob = outputs["pred_neg_logits"][b] | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob.softmax(dim=0) | |
| out_mask = outputs["pred_smasks"][b] # [num_queries, H_pred, W_pred] | |
| tgt_mask = fp_mask[b].to(out_mask) | |
| ign_mask = (gt_mask[b] | fp_mask[b]).to(out_mask) | |
| out_mask = out_mask[:, None] | |
| tgt_mask = tgt_mask[:, None] | |
| ign_mask = ign_mask[:, None] | |
| # all masks share the same set of points for efficient matching! | |
| point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) | |
| # get gt labels | |
| tgt_mask = point_sample( | |
| tgt_mask, | |
| point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| out_mask = point_sample( | |
| out_mask, | |
| point_coords.repeat(out_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| ign_mask = point_sample( | |
| ign_mask, | |
| point_coords.repeat(ign_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| with autocast(enabled=False): | |
| out_mask = out_mask.float() | |
| tgt_mask = tgt_mask.float() | |
| ign_mask = ign_mask.float() | |
| # Compute the focal loss between masks | |
| cost_mask = batch_sigmoid_ce_loss_jit(out_mask*ign_mask, tgt_mask*ign_mask) | |
| # Compute the dice loss betwen masks | |
| cost_dice = batch_dice_loss_jit(out_mask*ign_mask, tgt_mask*ign_mask) | |
| # Final cost matrix | |
| C = ( | |
| self.spatial_cost_mask * cost_mask | |
| + self.spatial_cost_class * cost_class | |
| + self.spatial_cost_dice * cost_dice | |
| ) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ] | |
| def caption_forward_womask(self, outputs, targets, extra): | |
| """More memory-friendly matching""" | |
| bs, _ = outputs["pred_logits"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| indices = [] | |
| t_emb = torch.cat([t['captions'] for t in targets]) | |
| v_emb = outputs['unmatched_pred_captions'] | |
| caption_target_count = np.cumsum([0] + [len(t['captions']) for t in targets]) | |
| # Iterate through batch size | |
| for b in range(bs): | |
| v_emb[b] = v_emb[b] / (v_emb[b].norm(dim=-1, keepdim=True) + 1e-7) | |
| num_queries = len(v_emb[b]) | |
| out_prob = vl_similarity(v_emb[b][None,], t_emb, temperature=extra['temperature']).softmax(-1)[0] | |
| tgt_ids = [idx for idx in range(caption_target_count[b], caption_target_count[b+1])] | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob[:, tgt_ids] | |
| # Final cost matrix | |
| C = (self.cost_class * cost_class) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ] | |
| def caption_forward_wmask(self, outputs, targets, extra): | |
| """More memory-friendly matching""" | |
| bs, _ = outputs["pred_logits"].shape[:2] | |
| if bs == 0 or len(targets) == 0: | |
| return None | |
| indices = [] | |
| t_emb = torch.cat([t['captions'] for t in targets]) | |
| v_emb = outputs['unmatched_pred_captions'] | |
| caption_target_count = np.cumsum([0] + [len(t['captions']) for t in targets]) | |
| # Iterate through batch size | |
| for b in range(bs): | |
| v_emb[b] = v_emb[b] / (v_emb[b].norm(dim=-1, keepdim=True) + 1e-7) | |
| num_queries = len(v_emb[b]) | |
| out_prob = vl_similarity(v_emb[b][None,], t_emb, temperature=extra['temperature']).softmax(-1)[0] | |
| tgt_ids = [idx for idx in range(caption_target_count[b], caption_target_count[b+1])] | |
| # Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
| # but approximate it in 1 - proba[target class]. | |
| # The 1 is a constant that doesn't change the matching, it can be ommitted. | |
| cost_class = -out_prob[:, tgt_ids] | |
| out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred] | |
| # gt masks are already padded when preparing target | |
| tgt_mask = targets[b]["masks"].to(out_mask) | |
| out_mask = out_mask[:, None] | |
| tgt_mask = tgt_mask[:, None] | |
| # all masks share the same set of points for efficient matching! | |
| point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) | |
| # get gt labels | |
| tgt_mask = point_sample( | |
| tgt_mask, | |
| point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| out_mask = point_sample( | |
| out_mask, | |
| point_coords.repeat(out_mask.shape[0], 1, 1), | |
| align_corners=False, | |
| ).squeeze(1) | |
| with autocast(enabled=False): | |
| out_mask = out_mask.float() | |
| tgt_mask = tgt_mask.float() | |
| # Compute the focal loss between masks | |
| cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) | |
| # Compute the dice loss betwen masks | |
| cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) | |
| # Final cost matrix | |
| C = ( | |
| self.cost_mask * cost_mask | |
| + self.cost_class * cost_class | |
| + self.cost_dice * cost_dice | |
| ) | |
| C = C.reshape(num_queries, -1).cpu() | |
| if C.isnan().any(): | |
| C[C.isnan()] = 1e6 ### temporary fix | |
| warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
| raise | |
| indices.append(linear_sum_assignment(C)) | |
| return [ | |
| (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
| for i, j in indices | |
| ] | |
| def forward(self, outputs, targets, mode='default', extra={}): | |
| """Performs the matching | |
| Params: | |
| outputs: This is a dict that contains at least these entries: | |
| "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits | |
| "pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks | |
| targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: | |
| "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth | |
| objects in the target) containing the class labels | |
| "masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks | |
| Returns: | |
| A list of size batch_size, containing tuples of (index_i, index_j) where: | |
| - index_i is the indices of the selected predictions (in order) | |
| - index_j is the indices of the corresponding selected targets (in order) | |
| For each batch element, it holds: | |
| len(index_i) = len(index_j) = min(num_queries, num_target_boxes) | |
| """ | |
| if mode == 'default': | |
| return self.memory_efficient_forward(outputs, targets) | |
| elif mode == 'grounding': | |
| return self.grounding_forward(outputs, targets, extra) | |
| elif mode == 'spatial': | |
| return self.spatial_forward(outputs, targets, extra) | |
| elif mode == 'spatial_pn': | |
| return self.spatial_forward_pn(outputs, targets, extra) | |
| elif mode == 'caption_womask': | |
| return self.caption_forward_womask(outputs, targets, extra) | |
| elif mode == 'caption_wmask': | |
| return self.caption_forward_wmask(outputs, targets, extra) | |
| else: | |
| assert False, "Mode {} is not supported.".format(mode) | |
| def __repr__(self, _repr_indent=4): | |
| head = "Matcher " + self.__class__.__name__ | |
| body = [ | |
| "cost_class: {}".format(self.cost_class), | |
| "cost_mask: {}".format(self.cost_mask), | |
| "cost_dice: {}".format(self.cost_dice), | |
| ] | |
| lines = [head] + [" " * _repr_indent + line for line in body] | |
| return "\n".join(lines) | |