Spaces:
Runtime error
Runtime error
| import logging | |
| import os | |
| import time | |
| import pickle | |
| import torch | |
| import torch.nn as nn | |
| from utilities.distributed import is_main_process | |
| logger = logging.getLogger(__name__) | |
| NORM_MODULES = [ | |
| torch.nn.BatchNorm1d, | |
| torch.nn.BatchNorm2d, | |
| torch.nn.BatchNorm3d, | |
| torch.nn.SyncBatchNorm, | |
| # NaiveSyncBatchNorm inherits from BatchNorm2d | |
| torch.nn.GroupNorm, | |
| torch.nn.InstanceNorm1d, | |
| torch.nn.InstanceNorm2d, | |
| torch.nn.InstanceNorm3d, | |
| torch.nn.LayerNorm, | |
| torch.nn.LocalResponseNorm, | |
| ] | |
| def register_norm_module(cls): | |
| NORM_MODULES.append(cls) | |
| return cls | |
| def align_and_update_state_dicts(model_state_dict, ckpt_state_dict): | |
| model_keys = sorted(model_state_dict.keys()) | |
| ckpt_keys = sorted(ckpt_state_dict.keys()) | |
| result_dicts = {} | |
| matched_log = [] | |
| unmatched_log = [] | |
| unloaded_log = [] | |
| for model_key in model_keys: | |
| model_weight = model_state_dict[model_key] | |
| if model_key in ckpt_keys: | |
| ckpt_weight = ckpt_state_dict[model_key] | |
| if model_weight.shape == ckpt_weight.shape: | |
| result_dicts[model_key] = ckpt_weight | |
| ckpt_keys.pop(ckpt_keys.index(model_key)) | |
| matched_log.append("Loaded {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape)) | |
| else: | |
| unmatched_log.append("*UNMATCHED* {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape)) | |
| else: | |
| unloaded_log.append("*UNLOADED* {}, Model Shape: {}".format(model_key, model_weight.shape)) | |
| if is_main_process(): | |
| for info in matched_log: | |
| logger.info(info) | |
| for info in unloaded_log: | |
| logger.warning(info) | |
| for key in ckpt_keys: | |
| logger.warning("$UNUSED$ {}, Ckpt Shape: {}".format(key, ckpt_state_dict[key].shape)) | |
| for info in unmatched_log: | |
| logger.warning(info) | |
| return result_dicts |