Spaces:
Sleeping
Sleeping
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import logging | |
| import torch | |
| import torch.nn as nn | |
| from utilities.model import align_and_update_state_dicts | |
| from utilities.distributed import init_distributed | |
| from utilities.arguments import load_opt_from_config_files | |
| import huggingface_hub | |
| logger = logging.getLogger(__name__) | |
| class BaseModel(nn.Module): | |
| def __init__(self, opt, module: nn.Module): | |
| super(BaseModel, self).__init__() | |
| self.opt = opt | |
| self.model = module | |
| def forward(self, *inputs, **kwargs): | |
| outputs = self.model(*inputs, **kwargs) | |
| return outputs | |
| def save_pretrained(self, save_dir): | |
| torch.save(self.model.state_dict(), os.path.join(save_dir, "model_state_dict.pt")) | |
| def from_pretrained(self, pretrained, filename: str = "biomedparse_v1.pt", | |
| local_dir: str = "./pretrained", config_dir: str = "./configs"): | |
| if pretrained.startswith("hf_hub:"): | |
| hub_name = pretrained.split(":")[1] | |
| huggingface_hub.hf_hub_download(hub_name, filename=filename, | |
| local_dir=local_dir) | |
| huggingface_hub.hf_hub_download(hub_name, filename="config.yaml", | |
| local_dir=config_dir) | |
| load_dir = os.path.join(local_dir, filename) | |
| else: | |
| load_dir = pretrained | |
| state_dict = torch.load(load_dir, map_location=self.opt['device']) | |
| state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict) | |
| self.model.load_state_dict(state_dict, strict=False) | |
| return self |