File size: 13,837 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from .cupy_kernels import remapping_kernel, patch_error_kernel, pairwise_patch_error_kernel
import numpy as np
import cupy as cp
import cv2


class PatchMatcher:
    def __init__(
        self, height, width, channel, minimum_patch_size,
        threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
        random_search_steps=3, random_search_range=4,
        use_mean_target_style=False, use_pairwise_patch_error=False,
        tracking_window_size=0
    ):
        self.height = height
        self.width = width
        self.channel = channel
        self.minimum_patch_size = minimum_patch_size
        self.threads_per_block = threads_per_block
        self.num_iter = num_iter
        self.gpu_id = gpu_id
        self.guide_weight = guide_weight
        self.random_search_steps = random_search_steps
        self.random_search_range = random_search_range
        self.use_mean_target_style = use_mean_target_style
        self.use_pairwise_patch_error = use_pairwise_patch_error
        self.tracking_window_size = tracking_window_size

        self.patch_size_list = [minimum_patch_size + i*2 for i in range(num_iter)][::-1]
        self.pad_size = self.patch_size_list[0] // 2
        self.grid = (
            (height + threads_per_block - 1) // threads_per_block,
            (width + threads_per_block - 1) // threads_per_block
        )
        self.block = (threads_per_block, threads_per_block)

    def pad_image(self, image):
        return cp.pad(image, ((0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size), (0, 0)))

    def unpad_image(self, image):
        return image[:, self.pad_size: -self.pad_size, self.pad_size: -self.pad_size, :]

    def apply_nnf_to_image(self, nnf, source):
        batch_size = source.shape[0]
        target = cp.zeros((batch_size, self.height + self.pad_size * 2, self.width + self.pad_size * 2, self.channel), dtype=cp.float32)
        remapping_kernel(
            self.grid + (batch_size,),
            self.block,
            (self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target)
        )
        return target

    def get_patch_error(self, source, nnf, target):
        batch_size = source.shape[0]
        error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
        patch_error_kernel(
            self.grid + (batch_size,),
            self.block,
            (self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target, error)
        )
        return error

    def get_pairwise_patch_error(self, source, nnf):
        batch_size = source.shape[0]//2
        error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
        source_a, nnf_a = source[0::2].copy(), nnf[0::2].copy()
        source_b, nnf_b = source[1::2].copy(), nnf[1::2].copy()
        pairwise_patch_error_kernel(
            self.grid + (batch_size,),
            self.block,
            (self.height, self.width, self.channel, self.patch_size, self.pad_size, source_a, nnf_a, source_b, nnf_b, error)
        )
        error = error.repeat(2, axis=0)
        return error

    def get_error(self, source_guide, target_guide, source_style, target_style, nnf):
        error_guide = self.get_patch_error(source_guide, nnf, target_guide)
        if self.use_mean_target_style:
            target_style = self.apply_nnf_to_image(nnf, source_style)
            target_style = target_style.mean(axis=0, keepdims=True)
            target_style = target_style.repeat(source_guide.shape[0], axis=0)
        if self.use_pairwise_patch_error:
            error_style = self.get_pairwise_patch_error(source_style, nnf)
        else:
            error_style = self.get_patch_error(source_style, nnf, target_style)
        error = error_guide * self.guide_weight + error_style
        return error

    def clamp_bound(self, nnf):
        nnf[:,:,:,0] = cp.clip(nnf[:,:,:,0], 0, self.height-1)
        nnf[:,:,:,1] = cp.clip(nnf[:,:,:,1], 0, self.width-1)
        return nnf

    def random_step(self, nnf, r):
        batch_size = nnf.shape[0]
        step = cp.random.randint(-r, r+1, size=(batch_size, self.height, self.width, 2), dtype=cp.int32)
        upd_nnf = self.clamp_bound(nnf + step)
        return upd_nnf

    def neighboor_step(self, nnf, d):
        if d==0:
            upd_nnf = cp.concatenate([nnf[:, :1, :], nnf[:, :-1, :]], axis=1)
            upd_nnf[:, :, :, 0] += 1
        elif d==1:
            upd_nnf = cp.concatenate([nnf[:, :, :1], nnf[:, :, :-1]], axis=2)
            upd_nnf[:, :, :, 1] += 1
        elif d==2:
            upd_nnf = cp.concatenate([nnf[:, 1:, :], nnf[:, -1:, :]], axis=1)
            upd_nnf[:, :, :, 0] -= 1
        elif d==3:
            upd_nnf = cp.concatenate([nnf[:, :, 1:], nnf[:, :, -1:]], axis=2)
            upd_nnf[:, :, :, 1] -= 1
        upd_nnf = self.clamp_bound(upd_nnf)
        return upd_nnf
        
    def shift_nnf(self, nnf, d):
        if d>0:
            d = min(nnf.shape[0], d)
            upd_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
        else:
            d = max(-nnf.shape[0], d)
            upd_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
        return upd_nnf
    
    def track_step(self, nnf, d):
        if self.use_pairwise_patch_error:
            upd_nnf = cp.zeros_like(nnf)
            upd_nnf[0::2] = self.shift_nnf(nnf[0::2], d)
            upd_nnf[1::2] = self.shift_nnf(nnf[1::2], d)
        else:
            upd_nnf = self.shift_nnf(nnf, d)
        return upd_nnf

    def C(self, n, m):
        # not used
        c = 1
        for i in range(1, n+1):
            c *= i
        for i in range(1, m+1):
            c //= i
        for i in range(1, n-m+1):
            c //= i
        return c

    def bezier_step(self, nnf, r):
        # not used
        n = r * 2 - 1
        upd_nnf = cp.zeros(shape=nnf.shape, dtype=cp.float32)
        for i, d in enumerate(list(range(-r, 0)) + list(range(1, r+1))):
            if d>0:
                ctl_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
            elif d<0:
                ctl_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
            upd_nnf += ctl_nnf * (self.C(n, i) / 2**n)
        upd_nnf = self.clamp_bound(upd_nnf).astype(nnf.dtype)
        return upd_nnf

    def update(self, source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf):
        upd_err = self.get_error(source_guide, target_guide, source_style, target_style, upd_nnf)
        upd_idx = (upd_err < err)
        nnf[upd_idx] = upd_nnf[upd_idx]
        err[upd_idx] = upd_err[upd_idx]
        return nnf, err

    def propagation(self, source_guide, target_guide, source_style, target_style, nnf, err):
        for d in cp.random.permutation(4):
            upd_nnf = self.neighboor_step(nnf, d)
            nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
        return nnf, err
        
    def random_search(self, source_guide, target_guide, source_style, target_style, nnf, err):
        for i in range(self.random_search_steps):
            upd_nnf = self.random_step(nnf, self.random_search_range)
            nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
        return nnf, err

    def track(self, source_guide, target_guide, source_style, target_style, nnf, err):
        for d in range(1, self.tracking_window_size + 1):
            upd_nnf = self.track_step(nnf, d)
            nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
            upd_nnf = self.track_step(nnf, -d)
            nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
        return nnf, err

    def iteration(self, source_guide, target_guide, source_style, target_style, nnf, err):
        nnf, err = self.propagation(source_guide, target_guide, source_style, target_style, nnf, err)
        nnf, err = self.random_search(source_guide, target_guide, source_style, target_style, nnf, err)
        nnf, err = self.track(source_guide, target_guide, source_style, target_style, nnf, err)
        return nnf, err

    def estimate_nnf(self, source_guide, target_guide, source_style, nnf):
        with cp.cuda.Device(self.gpu_id):
            source_guide = self.pad_image(source_guide)
            target_guide = self.pad_image(target_guide)
            source_style = self.pad_image(source_style)
            for it in range(self.num_iter):
                self.patch_size = self.patch_size_list[it]
                target_style = self.apply_nnf_to_image(nnf, source_style)
                err = self.get_error(source_guide, target_guide, source_style, target_style, nnf)
                nnf, err = self.iteration(source_guide, target_guide, source_style, target_style, nnf, err)
            target_style = self.unpad_image(self.apply_nnf_to_image(nnf, source_style))
        return nnf, target_style


class PyramidPatchMatcher:
    def __init__(
        self, image_height, image_width, channel, minimum_patch_size,
        threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
        use_mean_target_style=False, use_pairwise_patch_error=False,
        tracking_window_size=0,
        initialize="identity"
    ):
        maximum_patch_size = minimum_patch_size + (num_iter - 1) * 2
        self.pyramid_level = int(np.log2(min(image_height, image_width) / maximum_patch_size))
        self.pyramid_heights = []
        self.pyramid_widths = []
        self.patch_matchers = []
        self.minimum_patch_size = minimum_patch_size
        self.num_iter = num_iter
        self.gpu_id = gpu_id
        self.initialize = initialize
        for level in range(self.pyramid_level):
            height = image_height//(2**(self.pyramid_level - 1 - level))
            width = image_width//(2**(self.pyramid_level - 1 - level))
            self.pyramid_heights.append(height)
            self.pyramid_widths.append(width)
            self.patch_matchers.append(PatchMatcher(
                height, width, channel, minimum_patch_size=minimum_patch_size,
                threads_per_block=threads_per_block, num_iter=num_iter, gpu_id=gpu_id, guide_weight=guide_weight,
                use_mean_target_style=use_mean_target_style, use_pairwise_patch_error=use_pairwise_patch_error,
                tracking_window_size=tracking_window_size
            ))

    def resample_image(self, images, level):
        height, width = self.pyramid_heights[level], self.pyramid_widths[level]
        images = images.get()
        images_resample = []
        for image in images:
            image_resample = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA)
            images_resample.append(image_resample)
        images_resample = cp.array(np.stack(images_resample), dtype=cp.float32)
        return images_resample

    def initialize_nnf(self, batch_size):
        if self.initialize == "random":
            height, width = self.pyramid_heights[0], self.pyramid_widths[0]
            nnf = cp.stack([
                cp.random.randint(0, height, (batch_size, height, width), dtype=cp.int32),
                cp.random.randint(0, width, (batch_size, height, width), dtype=cp.int32)
            ], axis=3)
        elif self.initialize == "identity":
            height, width = self.pyramid_heights[0], self.pyramid_widths[0]
            nnf = cp.stack([
                cp.repeat(cp.arange(height), width).reshape(height, width),
                cp.tile(cp.arange(width), height).reshape(height, width)
            ], axis=2)
            nnf = cp.stack([nnf] * batch_size)
        else:
            raise NotImplementedError()
        return nnf

    def update_nnf(self, nnf, level):
        # upscale
        nnf = nnf.repeat(2, axis=1).repeat(2, axis=2) * 2
        nnf[:,[i for i in range(nnf.shape[0]) if i&1],:,0] += 1
        nnf[:,:,[i for i in range(nnf.shape[0]) if i&1],1] += 1
        # check if scale is 2
        height, width = self.pyramid_heights[level], self.pyramid_widths[level]
        if height != nnf.shape[0] * 2 or width != nnf.shape[1] * 2:
            nnf = nnf.get().astype(np.float32)
            nnf = [cv2.resize(n, (width, height), interpolation=cv2.INTER_LINEAR) for n in nnf]
            nnf = cp.array(np.stack(nnf), dtype=cp.int32)
            nnf = self.patch_matchers[level].clamp_bound(nnf)
        return nnf

    def apply_nnf_to_image(self, nnf, image):
        with cp.cuda.Device(self.gpu_id):
            image = self.patch_matchers[-1].pad_image(image)
            image = self.patch_matchers[-1].apply_nnf_to_image(nnf, image)
        return image

    def estimate_nnf(self, source_guide, target_guide, source_style):
        with cp.cuda.Device(self.gpu_id):
            if not isinstance(source_guide, cp.ndarray):
                source_guide = cp.array(source_guide, dtype=cp.float32)
            if not isinstance(target_guide, cp.ndarray):
                target_guide = cp.array(target_guide, dtype=cp.float32)
            if not isinstance(source_style, cp.ndarray):
                source_style = cp.array(source_style, dtype=cp.float32)
            for level in range(self.pyramid_level):
                nnf = self.initialize_nnf(source_guide.shape[0]) if level==0 else self.update_nnf(nnf, level)
                source_guide_ = self.resample_image(source_guide, level)
                target_guide_ = self.resample_image(target_guide, level)
                source_style_ = self.resample_image(source_style, level)
                nnf, target_style = self.patch_matchers[level].estimate_nnf(
                    source_guide_, target_guide_, source_style_, nnf
                )
        return nnf.get(), target_style.get()