Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,650 Bytes
1503e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import traceback,gradio as gr
import logging
from tools.i18n.i18n import I18nAuto
from tools.my_utils import clean_path
i18n = I18nAuto()
logger = logging.getLogger(__name__)
import librosa,ffmpeg
import soundfile as sf
import torch
import sys
from mdxnet import MDXNetDereverb
from vr import AudioPre, AudioPreDeEcho
from bsroformer import BsRoformer_Loader
weight_uvr5_root = "tools/uvr5/uvr5_weights"
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth") or name.endswith(".ckpt") or "onnx" in name:
uvr5_names.append(name.replace(".pth", "").replace(".ckpt", ""))
device=sys.argv[1]
is_half=eval(sys.argv[2])
webui_port_uvr5=int(sys.argv[3])
is_share=eval(sys.argv[4])
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
infos = []
try:
inp_root = clean_path(inp_root)
save_root_vocal = clean_path(save_root_vocal)
save_root_ins = clean_path(save_root_ins)
is_hp3 = "HP3" in model_name
if model_name == "onnx_dereverb_By_FoxJoy":
pre_fun = MDXNetDereverb(15)
elif model_name == "Bs_Roformer" or "bs_roformer" in model_name.lower():
func = BsRoformer_Loader
pre_fun = func(
model_path = os.path.join(weight_uvr5_root, model_name + ".ckpt"),
device = device,
is_half=is_half
)
else:
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
pre_fun = func(
agg=int(agg),
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
device=device,
is_half=is_half,
)
if inp_root != "":
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
else:
paths = [path.name for path in paths]
for path in paths:
inp_path = os.path.join(inp_root, path)
if(os.path.isfile(inp_path)==False):continue
need_reformat = 1
done = 0
try:
info = ffmpeg.probe(inp_path, cmd="ffprobe")
if (
info["streams"][0]["channels"] == 2
and info["streams"][0]["sample_rate"] == "44100"
):
need_reformat = 0
pre_fun._path_audio_(
inp_path, save_root_ins, save_root_vocal, format0,is_hp3
)
done = 1
except:
need_reformat = 1
traceback.print_exc()
if need_reformat == 1:
tmp_path = "%s/%s.reformatted.wav" % (
os.path.join(os.environ["TEMP"]),
os.path.basename(inp_path),
)
os.system(
f'ffmpeg -i "{inp_path}" -vn -acodec pcm_s16le -ac 2 -ar 44100 "{tmp_path}" -y'
)
inp_path = tmp_path
try:
if done == 0:
pre_fun._path_audio_(
inp_path, save_root_ins, save_root_vocal, format0,is_hp3
)
infos.append("%s->Success" % (os.path.basename(inp_path)))
yield "\n".join(infos)
except:
infos.append(
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
)
yield "\n".join(infos)
except:
infos.append(traceback.format_exc())
yield "\n".join(infos)
finally:
try:
if model_name == "onnx_dereverb_By_FoxJoy":
del pre_fun.pred.model
del pre_fun.pred.model_
else:
del pre_fun.model
del pre_fun
except:
traceback.print_exc()
print("clean_empty_cache")
if torch.cuda.is_available():
torch.cuda.empty_cache()
yield "\n".join(infos)
with gr.Blocks(title="UVR5 WebUI") as app:
gr.Markdown(
value=
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
)
with gr.Tabs():
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group():
gr.Markdown(
value=i18n("人声伴奏分离批量处理, 使用UVR5模型。") + "<br>" + \
i18n("合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。")+ "<br>" + \
i18n("模型分为三类:") + "<br>" + \
i18n("1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;") + "<br>" + \
i18n("2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;") + "<br>" + \
i18n("3、去混响、去延迟模型(by FoxJoy):") + "<br> " + \
i18n("(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;") + "<br> " + \
i18n("(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。") + "<br>" + \
i18n("去混响/去延迟,附:") + "<br>" + \
i18n("1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;") + "<br>" + \
i18n("2、MDX-Net-Dereverb模型挺慢的;") + "<br>" + \
i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。")
)
with gr.Row():
with gr.Column():
dir_wav_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径"),
placeholder="C:\\Users\\Desktop\\todo-songs",
)
wav_inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
with gr.Column():
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
agg = gr.Slider(
minimum=0,
maximum=20,
step=1,
label=i18n("人声提取激进程度"),
value=10,
interactive=True,
visible=False, # 先不开放调整
)
opt_vocal_root = gr.Textbox(
label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt"
)
opt_ins_root = gr.Textbox(
label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt"
)
format0 = gr.Radio(
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
value="flac",
interactive=True,
)
but2 = gr.Button(i18n("转换"), variant="primary")
vc_output4 = gr.Textbox(label=i18n("输出信息"))
but2.click(
uvr,
[
model_choose,
dir_wav_input,
opt_vocal_root,
wav_inputs,
opt_ins_root,
agg,
format0,
],
[vc_output4],
api_name="uvr_convert",
)
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=True,
share=is_share,
server_port=webui_port_uvr5,
quiet=True,
)
|