Spaces:
Running
Running
# Modified from https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
import os | |
gpt_path = os.environ.get( | |
"gpt_path", "pretrained_models/linghua-e15.ckpt" | |
) | |
sovits_path = os.environ.get("sovits_path", "pretrained_models/linghua_e10_s140.pth") | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "pretrained_models/chinese-hubert-base" | |
) | |
bert_path = os.environ.get( | |
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" | |
) | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
from feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
from time import time as ttime | |
import datetime | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from module.mel_processing import spectrogram_torch | |
from module.models import SynthesizerTrn | |
from my_utils import load_audio | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
is_half = eval( | |
os.environ.get("is_half", "True" if torch.cuda.is_available() else "False") | |
) | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
# bert_model=bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# if(is_half==True):phone_level_feature=phone_level_feature.half() | |
return phone_level_feature.T | |
n_semantic = 1024 | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
class DictToAttrRecursive: | |
def __init__(self, input_dict): | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
# 如果值是字典,递归调用构造函数 | |
setattr(self, key, DictToAttrRecursive(value)) | |
else: | |
setattr(self, key, value) | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
) | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
hz = 50 | |
max_sec = config["data"]["max_sec"] | |
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo | |
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
dict_language = {"Chinese": "zh", "English": "en", "Japanese": "ja"} | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): | |
start_time = datetime.datetime.now() | |
print(f"---START---{start_time}---") | |
print(f"ref_wav_path: {ref_wav_path}") | |
print(f"prompt_text: {prompt_text}") | |
print(f"prompt_language: {prompt_language}") | |
print(f"text: {text}") | |
print(f"text_language: {text_language}") | |
if len(prompt_text) > 100 or len(text) > 100: | |
print("Input text is limited to 100 characters.") | |
return "Input text is limited to 100 characters.", None | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
prompt_language, text = prompt_language, text.strip("\n") | |
with torch.no_grad(): | |
wav16k, _ = librosa.load(ref_wav_path, sr=16000) # 派蒙 | |
# length of wav16k in sec should be in 60s | |
if len(wav16k) > 16000 * 60: | |
print("Input audio is limited to 60 seconds.") | |
return "Input audio is limited to 60 seconds.", None | |
wav16k = wav16k[: int(hps.data.sampling_rate * max_sec)] | |
wav16k = torch.from_numpy(wav16k) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) | |
phones1 = cleaned_text_to_sequence(phones1) | |
texts = text.split("\n") | |
audio_opt = [] | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
for text in texts: | |
phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
phones2 = cleaned_text_to_sequence(phones2) | |
if prompt_language == "zh": | |
bert1 = get_bert_feature(norm_text1, word2ph1).to(device) | |
else: | |
bert1 = torch.zeros( | |
(1024, len(phones1)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
if text_language == "zh": | |
bert2 = get_bert_feature(norm_text2, word2ph2).to(device) | |
else: | |
bert2 = torch.zeros((1024, len(phones2))).to(bert1) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config["inference"]["top_k"], | |
early_stop_num=hz * max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
end_time = datetime.datetime.now() | |
dur = end_time - start_time | |
print( | |
f"Success! total time: {dur.seconds:.3f} sec,\ndetail time: {t1 - t0:.3f}, {t2 - t1:.3f}, {t3 - t2:.3f}, {t4 - t3:.3f}" | |
) | |
print(f"---END---{end_time}---") | |
return ( | |
f"Success! total time: {dur.seconds:.3f} sec,\ndetail time: {t1 - t0:.3f}, {t2 - t1:.3f}, {t3 - t2:.3f}, {t4 - t3:.3f}", | |
( | |
hps.data.sampling_rate, | |
(np.concatenate(audio_opt, 0) * 32768).astype(np.int16), | |
), | |
) | |
with gr.Blocks(title="GPT-SoVITS Zero-shot TTS Demo") as app: | |
gr.Markdown("# <center>🥳💕🎶 GPT-SoVITS 1分钟完美声音克隆,最强开源模型</center>") | |
gr.Markdown("## <center>🌟 只需1分钟语音,完美复刻任何角色的语音、语调、语气!声音克隆新纪元!Powered by [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)</center>") | |
gr.Markdown("### <center>🌊 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
gr.Markdown("## 请上传参考音频") | |
with gr.Row(): | |
inp_ref = gr.Audio(label="请上传数据集中的参考音频", type="filepath", value="linghua_90.wav") | |
prompt_text = gr.Textbox(label="参考音频对应的文字内容", value="藏明刀的刀工,也被算作是本領通神的神士相關人員,歸屬統籌文化、藝術、祭祀的射鳳形意派管理。") | |
prompt_language = gr.Dropdown( | |
label="参考音频的语言", | |
choices=["Chinese", "English", "Japanese"], | |
value="Chinese", | |
) | |
gr.Markdown("## 开始真实拟声之旅吧!") | |
with gr.Row(): | |
text = gr.Textbox(label="需要合成的内容", lines=5) | |
text_language = gr.Dropdown( | |
label="合成内容的语言", | |
choices=["Chinese", "English", "Japanese"], | |
value="Chinese", | |
) | |
inference_button = gr.Button("开始真实拟声吧!", variant="primary") | |
with gr.Column(): | |
info = gr.Textbox(label="Info", visible=False) | |
output = gr.Audio(label="为您合成的专属音频") | |
inference_button.click( | |
get_tts_wav, | |
[inp_ref, prompt_text, prompt_language, text, text_language], | |
[info, output], | |
) | |
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
app.queue(max_size=10) | |
app.launch(inbrowser=True) | |