Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import pathlib | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchaudio | |
from fairseq2.assets import InProcAssetMetadataProvider, asset_store | |
from huggingface_hub import snapshot_download | |
from seamless_communication.inference import Translator | |
from lang_list import ( | |
ASR_TARGET_LANGUAGE_NAMES, | |
LANGUAGE_NAME_TO_CODE, | |
S2ST_TARGET_LANGUAGE_NAMES, | |
S2TT_TARGET_LANGUAGE_NAMES, | |
T2ST_TARGET_LANGUAGE_NAMES, | |
T2TT_TARGET_LANGUAGE_NAMES, | |
TEXT_SOURCE_LANGUAGE_NAMES, | |
) | |
from scipy.io import wavfile | |
from scipy.io.wavfile import write | |
from speechbrain.pretrained import SpectralMaskEnhancement | |
enhance_model = SpectralMaskEnhancement.from_hparams( | |
source="speechbrain/metricgan-plus-voicebank", | |
savedir="pretrained_models/metricgan-plus-voicebank", | |
) | |
knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device='cpu') | |
def voice_change(audio_in, audio_ref): | |
samplerate1, data1 = wavfile.read(audio_in) | |
samplerate2, data2 = wavfile.read(audio_ref) | |
write("./audio_in.wav", samplerate1, data1) | |
write("./audio_ref.wav", samplerate2, data2) | |
query_seq = knn_vc.get_features("./audio_in.wav") | |
matching_set = knn_vc.get_matching_set(["./audio_ref.wav"]) | |
out_wav = knn_vc.match(query_seq, matching_set, topk=4) | |
torchaudio.save('output.wav', out_wav[None], 16000) | |
noisy = enhance_model.load_audio( | |
'output.wav' | |
).unsqueeze(0) | |
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) | |
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000) | |
return 'enhanced.wav' | |
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models")) | |
if not CHECKPOINTS_PATH.exists(): | |
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH) | |
asset_store.env_resolvers.clear() | |
asset_store.env_resolvers.append(lambda: "demo") | |
demo_metadata = [ | |
{ | |
"name": "seamlessM4T_v2_large@demo", | |
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt", | |
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model", | |
}, | |
{ | |
"name": "vocoder_v2@demo", | |
"checkpoint": f"file://{CHECKPOINTS_PATH}/vocoder_v2.pt", | |
}, | |
] | |
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata)) | |
DESCRIPTION = """\ | |
# SeamlessM4T | |
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality | |
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text. | |
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST) | |
translation and more, without relying on multiple separate models. | |
""" | |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available() | |
AUDIO_SAMPLE_RATE = 16000.0 | |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds | |
DEFAULT_TARGET_LANGUAGE = "French" | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
dtype = torch.float16 | |
else: | |
device = torch.device("cpu") | |
dtype = torch.float32 | |
translator = Translator( | |
model_name_or_card="seamlessM4T_v2_large", | |
vocoder_name_or_card="vocoder_v2", | |
device=device, | |
dtype=dtype, | |
apply_mintox=True, | |
) | |
def preprocess_audio(input_audio: str) -> None: | |
arr, org_sr = torchaudio.load(input_audio) | |
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) | |
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
if new_arr.shape[1] > max_length: | |
new_arr = new_arr[:, :max_length] | |
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") | |
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) | |
def run_s2st( | |
input_audio: str, source_language: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
preprocess_audio(input_audio) | |
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
out_texts, out_audios = translator.predict( | |
input=input_audio, | |
task_str="S2ST", | |
src_lang=source_language_code, | |
tgt_lang=target_language_code, | |
) | |
out_text = str(out_texts[0]) | |
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy() | |
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text | |
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str: | |
preprocess_audio(input_audio) | |
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
out_texts, _ = translator.predict( | |
input=input_audio, | |
task_str="S2TT", | |
src_lang=source_language_code, | |
tgt_lang=target_language_code, | |
) | |
return str(out_texts[0]) | |
def run_t2st(input_text: str, source_language: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]: | |
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
out_texts, out_audios = translator.predict( | |
input=input_text, | |
task_str="T2ST", | |
src_lang=source_language_code, | |
tgt_lang=target_language_code, | |
) | |
out_text = str(out_texts[0]) | |
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy() | |
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text | |
def run_t2tt(input_text: str, source_language: str, target_language: str) -> str: | |
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
out_texts, _ = translator.predict( | |
input=input_text, | |
task_str="T2TT", | |
src_lang=source_language_code, | |
tgt_lang=target_language_code, | |
) | |
return str(out_texts[0]) | |
def run_asr(input_audio: str, target_language: str) -> str: | |
preprocess_audio(input_audio) | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
out_texts, _ = translator.predict( | |
input=input_audio, | |
task_str="ASR", | |
src_lang=target_language_code, | |
tgt_lang=target_language_code, | |
) | |
return str(out_texts[0]) | |
with gr.Blocks() as demo_s2st: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_audio = gr.Audio(label="请上传一段语音", type="filepath") | |
source_language = gr.Dropdown( | |
label="请选择上传语音对应的语言", | |
choices=ASR_TARGET_LANGUAGE_NAMES, | |
value="Mandarin Chinese", | |
) | |
target_language = gr.Dropdown( | |
label="请选择翻译后的语言", | |
choices=S2ST_TARGET_LANGUAGE_NAMES, | |
value="English", | |
) | |
btn = gr.Button("开始AI同声传译之旅吧", variant="primary") | |
btn_vc = gr.Button("恢复原本的音色吧!", variant="primary") | |
with gr.Column(): | |
with gr.Group(): | |
output_audio = gr.Audio( | |
label="同声传译后的语音", | |
autoplay=False, | |
streaming=False, | |
type="filepath", | |
interactive=False, | |
) | |
output_text = gr.Textbox(label="翻译后的文本") | |
audio_vc = gr.Audio( | |
label="相同音色的AI专属语音", | |
autoplay=False, | |
streaming=False, | |
type="filepath", | |
) | |
gr.Examples( | |
examples=[ | |
["assets/sample_input.mp3", "English", "French"], | |
["assets/sample_input.mp3", "English", "Mandarin Chinese"], | |
["assets/sample_input_2.mp3", "English", "Hindi"], | |
["assets/sample_input_2.mp3", "English", "Spanish"], | |
], | |
inputs=[input_audio, source_language, target_language], | |
outputs=[output_audio, output_text], | |
fn=run_s2st, | |
cache_examples=CACHE_EXAMPLES, | |
api_name=False, | |
) | |
btn.click( | |
fn=run_s2st, | |
inputs=[input_audio, source_language, target_language], | |
outputs=[output_audio, output_text], | |
api_name="s2st", | |
) | |
btn_vc.click(voice_change, [output_audio, input_audio], [audio_vc]) | |
with gr.Blocks() as demo_s2tt: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_audio = gr.Audio(label="请上传一段语音", type="filepath") | |
source_language = gr.Dropdown( | |
label="请选择上传语音对应的语言", | |
choices=ASR_TARGET_LANGUAGE_NAMES, | |
value="Mandarin Chinese", | |
) | |
target_language = gr.Dropdown( | |
label="请选择翻译后的语言", | |
choices=S2TT_TARGET_LANGUAGE_NAMES, | |
value="English", | |
) | |
btn = gr.Button("开始AI翻译之旅吧!") | |
with gr.Column(): | |
output_text = gr.Textbox(label="翻译后的文本") | |
gr.Examples( | |
examples=[ | |
["assets/sample_input.mp3", "English", "French"], | |
["assets/sample_input.mp3", "English", "Mandarin Chinese"], | |
["assets/sample_input_2.mp3", "English", "Hindi"], | |
["assets/sample_input_2.mp3", "English", "Spanish"], | |
], | |
inputs=[input_audio, source_language, target_language], | |
outputs=output_text, | |
fn=run_s2tt, | |
cache_examples=CACHE_EXAMPLES, | |
api_name=False, | |
) | |
btn.click( | |
fn=run_s2tt, | |
inputs=[input_audio, source_language, target_language], | |
outputs=output_text, | |
api_name="s2tt", | |
) | |
with gr.Blocks() as demo_t2st: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_text = gr.Textbox(label="Input text") | |
with gr.Row(): | |
source_language = gr.Dropdown( | |
label="Source language", | |
choices=TEXT_SOURCE_LANGUAGE_NAMES, | |
value="English", | |
) | |
target_language = gr.Dropdown( | |
label="Target language", | |
choices=T2ST_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
) | |
btn = gr.Button("Translate") | |
with gr.Column(): | |
with gr.Group(): | |
output_audio = gr.Audio( | |
label="Translated speech", | |
autoplay=False, | |
streaming=False, | |
type="numpy", | |
) | |
output_text = gr.Textbox(label="Translated text") | |
gr.Examples( | |
examples=[ | |
[ | |
"My favorite animal is the elephant.", | |
"English", | |
"French", | |
], | |
[ | |
"My favorite animal is the elephant.", | |
"English", | |
"Mandarin Chinese", | |
], | |
[ | |
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
"English", | |
"Hindi", | |
], | |
[ | |
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
"English", | |
"Spanish", | |
], | |
], | |
inputs=[input_text, source_language, target_language], | |
outputs=[output_audio, output_text], | |
fn=run_t2st, | |
cache_examples=CACHE_EXAMPLES, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[input_text.submit, btn.click], | |
fn=run_t2st, | |
inputs=[input_text, source_language, target_language], | |
outputs=[output_audio, output_text], | |
api_name="t2st", | |
) | |
with gr.Blocks() as demo_t2tt: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_text = gr.Textbox(label="Input text") | |
with gr.Row(): | |
source_language = gr.Dropdown( | |
label="Source language", | |
choices=TEXT_SOURCE_LANGUAGE_NAMES, | |
value="English", | |
) | |
target_language = gr.Dropdown( | |
label="Target language", | |
choices=T2TT_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
) | |
btn = gr.Button("Translate") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Translated text") | |
gr.Examples( | |
examples=[ | |
[ | |
"My favorite animal is the elephant.", | |
"English", | |
"French", | |
], | |
[ | |
"My favorite animal is the elephant.", | |
"English", | |
"Mandarin Chinese", | |
], | |
[ | |
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
"English", | |
"Hindi", | |
], | |
[ | |
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
"English", | |
"Spanish", | |
], | |
], | |
inputs=[input_text, source_language, target_language], | |
outputs=output_text, | |
fn=run_t2tt, | |
cache_examples=CACHE_EXAMPLES, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[input_text.submit, btn.click], | |
fn=run_t2tt, | |
inputs=[input_text, source_language, target_language], | |
outputs=output_text, | |
api_name="t2tt", | |
) | |
with gr.Blocks() as demo_asr: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_audio = gr.Audio(label="Input speech", type="filepath") | |
target_language = gr.Dropdown( | |
label="Target language", | |
choices=ASR_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
) | |
btn = gr.Button("Translate") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Translated text") | |
gr.Examples( | |
examples=[ | |
["assets/sample_input.mp3", "English"], | |
["assets/sample_input_2.mp3", "English"], | |
], | |
inputs=[input_audio, target_language], | |
outputs=output_text, | |
fn=run_asr, | |
cache_examples=CACHE_EXAMPLES, | |
api_name=False, | |
) | |
btn.click( | |
fn=run_asr, | |
inputs=[input_audio, target_language], | |
outputs=output_text, | |
api_name="asr", | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("# <center>🌊💕🎶 Meta AI 3秒同声传译 + 声音克隆</center>") | |
gr.Markdown("## <center>🌟 - 只需3秒,用自己的声音说出百种语言,模型支持百种语言相互同传! </center>") | |
gr.Markdown("### <center>🍻 - 更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
with gr.Tabs(): | |
with gr.Tab(label="S2ST"): | |
demo_s2st.render() | |
with gr.Tab(label="S2TT"): | |
demo_s2tt.render() | |
with gr.Tab(label="T2ST"): | |
demo_t2st.render() | |
with gr.Tab(label="T2TT"): | |
demo_t2tt.render() | |
with gr.Tab(label="ASR"): | |
demo_asr.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=50).launch(show_error=True) | |