Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
3 |
import streamlit as st
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
@@ -8,6 +9,10 @@ from langchain_community.vectorstores import FAISS
|
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
10 |
|
|
|
|
|
|
|
|
|
11 |
# Step 1: Load the PDF and create a vector store
|
12 |
@st.cache_resource
|
13 |
def load_pdf_to_vectorstore(pdf_path):
|
@@ -16,8 +21,8 @@ def load_pdf_to_vectorstore(pdf_path):
|
|
16 |
documents = loader.load()
|
17 |
|
18 |
text_splitter = RecursiveCharacterTextSplitter(
|
19 |
-
chunk_size=
|
20 |
-
chunk_overlap=
|
21 |
separators=["\n\n", "\n", ".", " ", ""]
|
22 |
)
|
23 |
|
@@ -34,33 +39,40 @@ def load_pdf_to_vectorstore(pdf_path):
|
|
34 |
# Step 2: Initialize the LaMini model
|
35 |
@st.cache_resource
|
36 |
def setup_model():
|
37 |
-
model_id = "MBZUAI/LaMini-Flan-T5-
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
pipe = pipeline(
|
42 |
"text2text-generation",
|
43 |
model=model,
|
44 |
tokenizer=tokenizer,
|
45 |
-
max_length=
|
46 |
-
do_sample=
|
47 |
temperature=0.3,
|
48 |
top_p=0.95,
|
49 |
-
device=0 if torch.cuda.is_available() else -1
|
|
|
50 |
)
|
51 |
return pipe
|
52 |
|
53 |
# Step 3: Generate a response using the model and vector store
|
54 |
def generate_response(pipe, vectorstore, user_input):
|
55 |
# Get relevant context
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
context = "\n".join([f"Page {doc.metadata.get('page', 'unknown')}: {doc.page_content}" for doc in docs])
|
62 |
|
63 |
-
#
|
64 |
prompt = PromptTemplate(
|
65 |
input_variables=["context", "question"],
|
66 |
template="""
|
@@ -80,6 +92,20 @@ def generate_response(pipe, vectorstore, user_input):
|
|
80 |
|
81 |
return response
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# Streamlit UI
|
84 |
def main():
|
85 |
st.title("Medical Chatbot Assistant 🏥")
|
@@ -88,17 +114,39 @@ def main():
|
|
88 |
pdf_path = "Medical_book.pdf"
|
89 |
|
90 |
if os.path.exists(pdf_path):
|
91 |
-
#
|
92 |
-
|
93 |
-
pipe = setup_model()
|
94 |
|
95 |
-
#
|
96 |
-
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
else:
|
103 |
st.error("The file 'Medical_book.pdf' was not found in the root directory.")
|
104 |
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import torch.backends.cudnn as cudnn
|
4 |
import streamlit as st
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
11 |
|
12 |
+
# Enable CUDA optimizations if available
|
13 |
+
if torch.cuda.is_available():
|
14 |
+
cudnn.benchmark = True
|
15 |
+
|
16 |
# Step 1: Load the PDF and create a vector store
|
17 |
@st.cache_resource
|
18 |
def load_pdf_to_vectorstore(pdf_path):
|
|
|
21 |
documents = loader.load()
|
22 |
|
23 |
text_splitter = RecursiveCharacterTextSplitter(
|
24 |
+
chunk_size=1000,
|
25 |
+
chunk_overlap=20,
|
26 |
separators=["\n\n", "\n", ".", " ", ""]
|
27 |
)
|
28 |
|
|
|
39 |
# Step 2: Initialize the LaMini model
|
40 |
@st.cache_resource
|
41 |
def setup_model():
|
42 |
+
model_id = "MBZUAI/LaMini-Flan-T5-248M" # Using smaller model for faster inference
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
44 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
45 |
+
model_id,
|
46 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
47 |
+
low_cpu_mem_usage=True
|
48 |
+
)
|
49 |
+
|
50 |
+
if torch.cuda.is_available():
|
51 |
+
model = model.cuda()
|
52 |
|
53 |
pipe = pipeline(
|
54 |
"text2text-generation",
|
55 |
model=model,
|
56 |
tokenizer=tokenizer,
|
57 |
+
max_length=256,
|
58 |
+
do_sample=False,
|
59 |
temperature=0.3,
|
60 |
top_p=0.95,
|
61 |
+
device=0 if torch.cuda.is_available() else -1,
|
62 |
+
batch_size=1
|
63 |
)
|
64 |
return pipe
|
65 |
|
66 |
# Step 3: Generate a response using the model and vector store
|
67 |
def generate_response(pipe, vectorstore, user_input):
|
68 |
# Get relevant context
|
69 |
+
docs = vectorstore.similarity_search(user_input, k=2)
|
70 |
+
context = "\n".join([
|
71 |
+
f"Page {doc.metadata.get('page', 'unknown')}: {doc.page_content}"
|
72 |
+
for doc in docs
|
73 |
+
])
|
|
|
74 |
|
75 |
+
# Create prompt
|
76 |
prompt = PromptTemplate(
|
77 |
input_variables=["context", "question"],
|
78 |
template="""
|
|
|
92 |
|
93 |
return response
|
94 |
|
95 |
+
# Cache responses for repeated questions
|
96 |
+
@st.cache_data
|
97 |
+
def cached_generate_response(user_input, _pipe, _vectorstore):
|
98 |
+
return generate_response(_pipe, _vectorstore, user_input)
|
99 |
+
|
100 |
+
# Batch processing for multiple questions
|
101 |
+
def batch_generate_responses(pipe, vectorstore, questions, batch_size=4):
|
102 |
+
responses = []
|
103 |
+
for i in range(0, len(questions), batch_size):
|
104 |
+
batch = questions[i:i + batch_size]
|
105 |
+
batch_responses = [generate_response(pipe, vectorstore, q) for q in batch]
|
106 |
+
responses.extend(batch_responses)
|
107 |
+
return responses
|
108 |
+
|
109 |
# Streamlit UI
|
110 |
def main():
|
111 |
st.title("Medical Chatbot Assistant 🏥")
|
|
|
114 |
pdf_path = "Medical_book.pdf"
|
115 |
|
116 |
if os.path.exists(pdf_path):
|
117 |
+
# Initialize progress
|
118 |
+
progress_text = "Operation in progress. Please wait."
|
|
|
119 |
|
120 |
+
# Load vector store and model with progress indication
|
121 |
+
with st.spinner("Loading PDF and initializing model..."):
|
122 |
+
vectorstore = load_pdf_to_vectorstore(pdf_path)
|
123 |
+
pipe = setup_model()
|
124 |
+
st.success("Ready to answer questions!")
|
125 |
|
126 |
+
# Create a chat-like interface
|
127 |
+
if "messages" not in st.session_state:
|
128 |
+
st.session_state.messages = []
|
129 |
+
|
130 |
+
# Display chat history
|
131 |
+
for message in st.session_state.messages:
|
132 |
+
with st.chat_message(message["role"]):
|
133 |
+
st.markdown(message["content"])
|
134 |
+
|
135 |
+
# User input
|
136 |
+
if prompt := st.chat_input("Ask your medical question:"):
|
137 |
+
# Add user message to chat history
|
138 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
139 |
+
with st.chat_message("user"):
|
140 |
+
st.markdown(prompt)
|
141 |
+
|
142 |
+
# Generate and display response
|
143 |
+
with st.chat_message("assistant"):
|
144 |
+
with st.spinner("Generating response..."):
|
145 |
+
response = cached_generate_response(prompt, pipe, vectorstore)
|
146 |
+
st.markdown(response)
|
147 |
+
# Add assistant message to chat history
|
148 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
149 |
+
|
150 |
else:
|
151 |
st.error("The file 'Medical_book.pdf' was not found in the root directory.")
|
152 |
|