Spaces:
Sleeping
Sleeping
Commit
·
ca0c0af
1
Parent(s):
ce3d949
feat: ✨ Thêm ứng dụng Gradio để nhận diện tướng AOV
Browse files- Tạo giao diện Gradio cho phép người dùng tải ảnh lên và nhận diện tướng AOV sử dụng YOLOv8.
- Tích hợp model YOLOv8 để thực hiện việc nhận diện và hiển thị kết quả trên ảnh.
- Thêm file requirements.txt để liệt kê các thư viện cần thiết cho ứng dụng.
- app.py +106 -0
- models/aov_herodetector_v1.pt +3 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import os
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
model_path = "models/aov_herodetector_v1.pt"
|
10 |
+
try:
|
11 |
+
model = YOLO(model_path)
|
12 |
+
print(f"Model loaded successfully from {model_path}")
|
13 |
+
except Exception as e:
|
14 |
+
print(f"Error loading model: {e}")
|
15 |
+
model = None
|
16 |
+
|
17 |
+
def detect_heroes(image):
|
18 |
+
"""
|
19 |
+
Detect AOV heroes in the uploaded image
|
20 |
+
"""
|
21 |
+
if model is None:
|
22 |
+
return None, "Model not loaded properly"
|
23 |
+
|
24 |
+
try:
|
25 |
+
# Convert PIL Image to numpy array if needed
|
26 |
+
if isinstance(image, Image.Image):
|
27 |
+
image = np.array(image)
|
28 |
+
|
29 |
+
# Run inference
|
30 |
+
results = model(image)
|
31 |
+
|
32 |
+
# Get the first result
|
33 |
+
result = results[0]
|
34 |
+
|
35 |
+
# Plot results on image
|
36 |
+
annotated_image = result.plot()
|
37 |
+
|
38 |
+
# Convert BGR to RGB (OpenCV uses BGR, but gradio expects RGB)
|
39 |
+
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
40 |
+
|
41 |
+
# Get detection info
|
42 |
+
detection_info = ""
|
43 |
+
if len(result.boxes) > 0:
|
44 |
+
detection_info = f"Detected {len(result.boxes)} heroes:\n"
|
45 |
+
for i, box in enumerate(result.boxes):
|
46 |
+
conf = box.conf[0].item()
|
47 |
+
cls = int(box.cls[0].item())
|
48 |
+
class_name = model.names[cls] if cls < len(model.names) else f"Class_{cls}"
|
49 |
+
detection_info += f"- {class_name}: {conf:.2f}\n"
|
50 |
+
else:
|
51 |
+
detection_info = "No heroes detected"
|
52 |
+
|
53 |
+
return annotated_image, detection_info
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
return None, f"Error during detection: {str(e)}"
|
57 |
+
|
58 |
+
# Create Gradio interface
|
59 |
+
with gr.Blocks(title="AOV Hero Detector", theme=gr.themes.Soft()) as demo:
|
60 |
+
gr.Markdown("# 🎮 Arena of Valor Hero Detector")
|
61 |
+
gr.Markdown("Upload an image to detect AOV heroes using YOLOv8 model")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column():
|
65 |
+
input_image = gr.Image(
|
66 |
+
label="Upload Image",
|
67 |
+
type="pil",
|
68 |
+
height=400
|
69 |
+
)
|
70 |
+
detect_btn = gr.Button("🔍 Detect Heroes", variant="primary")
|
71 |
+
|
72 |
+
with gr.Column():
|
73 |
+
output_image = gr.Image(
|
74 |
+
label="Detection Result",
|
75 |
+
height=400
|
76 |
+
)
|
77 |
+
detection_text = gr.Textbox(
|
78 |
+
label="Detection Info",
|
79 |
+
lines=5,
|
80 |
+
max_lines=10
|
81 |
+
)
|
82 |
+
|
83 |
+
# Examples (optional - you can add sample images)
|
84 |
+
gr.Examples(
|
85 |
+
examples=[], # Add paths to example images if you have them
|
86 |
+
inputs=input_image,
|
87 |
+
label="Example Images"
|
88 |
+
)
|
89 |
+
|
90 |
+
# Event handlers
|
91 |
+
detect_btn.click(
|
92 |
+
fn=detect_heroes,
|
93 |
+
inputs=input_image,
|
94 |
+
outputs=[output_image, detection_text]
|
95 |
+
)
|
96 |
+
|
97 |
+
# Auto-detect when image is uploaded
|
98 |
+
input_image.change(
|
99 |
+
fn=detect_heroes,
|
100 |
+
inputs=input_image,
|
101 |
+
outputs=[output_image, detection_text]
|
102 |
+
)
|
103 |
+
|
104 |
+
# Launch the app
|
105 |
+
if __name__ == "__main__":
|
106 |
+
demo.launch()
|
models/aov_herodetector_v1.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a80e681d5aade95cd5b7d30e150cfc81e6737ab363ab5863dd41358b84cb0c1
|
3 |
+
size 52025867
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics
|
3 |
+
opencv-python
|
4 |
+
pillow
|
5 |
+
numpy
|
6 |
+
torch
|
7 |
+
torchvision
|