Spaces:
Build error
Build error
| import os | |
| import random | |
| from dataclasses import dataclass | |
| from typing import Any, List, Dict, Optional, Union, Tuple | |
| import cv2 | |
| import torch | |
| import requests | |
| import numpy as np | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline | |
| import gradio as gr | |
| import json | |
| class BoundingBox: | |
| xmin: int | |
| ymin: int | |
| xmax: int | |
| ymax: int | |
| def xyxy(self) -> List[float]: | |
| return [self.xmin, self.ymin, self.xmax, self.ymax] | |
| class DetectionResult: | |
| score: float | |
| label: str | |
| box: BoundingBox | |
| mask: Optional[np.ndarray] = None | |
| def from_dict(cls, detection_dict: Dict) -> 'DetectionResult': | |
| return cls( | |
| score=detection_dict['score'], | |
| label=detection_dict['label'], | |
| box=BoundingBox( | |
| xmin=detection_dict['box']['xmin'], | |
| ymin=detection_dict['box']['ymin'], | |
| xmax=detection_dict['box']['xmax'], | |
| ymax=detection_dict['box']['ymax'] | |
| ) | |
| ) | |
| def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray: | |
| image_cv2 = np.array(image) if isinstance(image, Image.Image) else image | |
| image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR) | |
| for detection in detection_results: | |
| label = detection.label | |
| score = detection.score | |
| box = detection.box | |
| mask = detection.mask | |
| if include_bboxes: | |
| color = np.random.randint(0, 256, size=3).tolist() | |
| cv2.rectangle(image_cv2, (box.xmin, box.ymin), | |
| (box.xmax, box.ymax), color, 2) | |
| cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10), | |
| cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
| return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB) | |
| def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray: | |
| annotated_image = annotate(image, detections, include_bboxes) | |
| return annotated_image | |
| def load_image(image: Union[str, Image.Image]) -> Image.Image: | |
| if isinstance(image, str) and image.startswith("http"): | |
| image = Image.open(requests.get(image, stream=True).raw).convert("RGB") | |
| elif isinstance(image, str): | |
| image = Image.open(image).convert("RGB") | |
| else: | |
| image = image.convert("RGB") | |
| return image | |
| def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]]]: | |
| boxes = [] | |
| for result in detection_results: | |
| xyxy = result.box.xyxy | |
| boxes.append(xyxy) | |
| return [boxes] | |
| def mask_to_polygon(mask: np.ndarray) -> np.ndarray: | |
| contours, _ = cv2.findContours( | |
| mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| if len(contours) == 0: | |
| return np.array([]) | |
| largest_contour = max(contours, key=cv2.contourArea) | |
| return largest_contour | |
| def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]: | |
| masks = masks.cpu().float().permute(0, 2, 3, 1).mean( | |
| axis=-1).numpy().astype(np.uint8) | |
| masks = (masks > 0).astype(np.uint8) | |
| if polygon_refinement: | |
| for idx, mask in enumerate(masks): | |
| shape = mask.shape | |
| polygon = mask_to_polygon(mask) | |
| masks[idx] = cv2.fillPoly( | |
| np.zeros(shape, dtype=np.uint8), [polygon], 1) | |
| return list(masks) | |
| def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]: | |
| detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base" | |
| object_detector = pipeline( | |
| model=detector_id, task="zero-shot-object-detection", device="cpu") | |
| labels = [label if label.endswith(".") else label+"." for label in labels] | |
| results = object_detector( | |
| image, candidate_labels=labels, threshold=threshold) | |
| return [DetectionResult.from_dict(result) for result in results] | |
| def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]: | |
| segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM" | |
| segmentator = AutoModelForMaskGeneration.from_pretrained( | |
| segmenter_id).to("cpu") | |
| processor = AutoProcessor.from_pretrained(segmenter_id) | |
| boxes = get_boxes(detection_results) | |
| inputs = processor(images=image, input_boxes=boxes, | |
| return_tensors="pt").to("cpu") | |
| outputs = segmentator(**inputs) | |
| masks = processor.post_process_masks( | |
| masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0] | |
| masks = refine_masks(masks, polygon_refinement) | |
| for detection_result, mask in zip(detection_results, masks): | |
| detection_result.mask = mask | |
| return detection_results | |
| def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, polygon_refinement: bool = False, detector_id: Optional[str] = None, segmenter_id: Optional[str] = None) -> Tuple[np.ndarray, List[DetectionResult]]: | |
| image = load_image(image) | |
| detections = detect(image, labels, threshold, detector_id) | |
| detections = segment(image, detections, polygon_refinement, segmenter_id) | |
| return np.array(image), detections | |
| def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]: | |
| y, x = np.where(mask) | |
| return x.min(), y.min(), x.max(), y.max() | |
| def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionResult, background: np.ndarray) -> None: | |
| mask = detection.mask | |
| xmin, ymin, xmax, ymax = mask_to_min_max(mask) | |
| insect_crop = original_image[ymin:ymax, xmin:xmax] | |
| mask_crop = mask[ymin:ymax, xmin:xmax] | |
| insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop) | |
| x_offset, y_offset = xmin, ymin | |
| x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0] | |
| insect_area = background[y_offset:y_end, x_offset:x_end] | |
| insect_area[mask_crop == 1] = insect[mask_crop == 1] | |
| def create_yellow_background_with_insects(image: np.ndarray) -> np.ndarray: | |
| labels = ["insect"] | |
| original_image, detections = grounded_segmentation( | |
| image, labels, threshold=0.3, polygon_refinement=True) | |
| yellow_background = np.full( | |
| (original_image.shape[0], original_image.shape[1], 3), (0, 255, 255), dtype=np.uint8) # BGR for yellow | |
| for detection in detections: | |
| if detection.mask is not None: | |
| extract_and_paste_insect( | |
| original_image, detection, yellow_background) | |
| # Convert back to RGB to match Gradio's expected input format | |
| yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB) | |
| return yellow_background | |
| def run_length_encoding(mask): | |
| pixels = mask.flatten() | |
| rle = [] | |
| last_val = 0 | |
| count = 0 | |
| for pixel in pixels: | |
| if pixel == last_val: | |
| count += 1 | |
| else: | |
| if count > 0: | |
| rle.append(count) | |
| count = 1 | |
| last_val = pixel | |
| if count > 0: | |
| rle.append(count) | |
| return rle | |
| def detections_to_json(detections): | |
| detections_list = [] | |
| for detection in detections: | |
| detection_dict = { | |
| "score": detection.score, | |
| "label": detection.label, | |
| "box": { | |
| "xmin": detection.box.xmin, | |
| "ymin": detection.box.ymin, | |
| "xmax": detection.box.xmax | |
| }, | |
| "mask": run_length_encoding(detection.mask) if detection.mask is not None else None | |
| } | |
| detections_list.append(detection_dict) | |
| return detections_list | |
| def crop_bounding_boxes_with_yellow_background(image: np.ndarray, yellow_background: np.ndarray, detections: List[DetectionResult]) -> List[np.ndarray]: | |
| crops = [] | |
| for detection in detections: | |
| xmin, ymin, xmax, ymax = detection.box.xyxy | |
| crop = yellow_background[ymin:ymax, xmin:xmax] | |
| crops.append(crop) | |
| return crops | |