File size: 11,212 Bytes
f5b4640
 
 
 
 
 
 
 
 
 
 
 
 
 
2dff707
 
 
 
 
 
 
 
f5b4640
 
2dff707
 
 
f5b4640
2dff707
f5b4640
2dff707
f5b4640
 
 
2dff707
f5b4640
2dff707
f5b4640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dff707
 
 
 
 
 
 
 
 
f5b4640
 
2dff707
 
 
 
 
 
 
f5b4640
 
 
 
 
 
 
 
 
 
 
 
 
2dff707
f5b4640
 
 
 
 
 
 
 
 
 
2dff707
 
 
f5b4640
 
 
 
 
 
 
 
2dff707
 
 
f5b4640
 
2dff707
 
 
 
f5b4640
2dff707
f5b4640
2dff707
 
 
 
f5b4640
 
 
 
2dff707
 
f5b4640
 
 
 
 
 
2dff707
 
f5b4640
 
2dff707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b4640
2dff707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b4640
 
 
 
2dff707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from optimum.intel.openvino import OVModelForCausalLM
from transformers import AutoTokenizer, AutoConfig
from threading import Thread
from transformers import TextIteratorStreamer
import streamlit as st
import warnings
warnings.filterwarnings(action='ignore')
import datetime
import random
import string
from time import sleep
import tiktoken
import asyncio # ๋น„๋™๊ธฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด asyncio ์ถ”๊ฐ€

# requirements.txt ํŒŒ์ผ ํ•„์š”:
# optimum[openvino]
# transformers
# streamlit
# tiktoken
# asyncio

# ํ† ํฐ ์ˆ˜ ๊ณ„์‚ฐ์„ ์œ„ํ•œ ์ธ์ฝ”๋”ฉ ์„ค์ •
encoding = tiktoken.get_encoding("cl100k_base")

# ๋ชจ๋ธ ์ด๋ฆ„ ๋ฐ ID ์„ค์ • (๋ณ€์ˆ˜ ํ†ต์ผ)
model_name = "Gemma2-2B-it"
model_id = "AIFunOver/gemma-2-2b-it-openvino-4bit"  # Hugging Face Hub ๋ชจ๋ธ ID

# ์›นํŽ˜์ด์ง€ ๊ธฐ๋ณธ ์„ค์ •
st.set_page_config(
    page_title=f"Your LocalGPT โœจ with {model_name}",
    page_icon="๐ŸŒŸ",
    layout="wide")

# Session State ์ดˆ๊ธฐํ™” (Hugging Face Space ์žฌ์‹คํ–‰ ์‹œ ์ƒํƒœ ์œ ์ง€)
if "hf_model" not in st.session_state:
    st.session_state.hf_model = model_name
if "messages" not in st.session_state:
    st.session_state.messages = []
if "chatMessages" not in st.session_state:
    st.session_state.chatMessages = []
if "repeat" not in st.session_state:
    st.session_state.repeat = 1.35
if "temperature" not in st.session_state:
    st.session_state.temperature = 0.1
if "maxlength" not in st.session_state:
    st.session_state.maxlength = 500
if "speed" not in st.session_state:
    st.session_state.speed = 0.0
if "numOfTurns" not in st.session_state:
    st.session_state.numOfTurns = 0
if "maxTurns" not in st.session_state:
    st.session_state.maxTurns = 5  # must be odd number, greater than equal to 5
if "logfilename" not in st.session_state:
    ## Logger file
    logfile = f'logs/Gemma2-2B_{genRANstring(5)}_log.txt' # Space ๋ฃจํŠธ์˜ logs ํด๋”์— ์ €์žฅ
    st.session_state.logfilename = logfile
    # Write in the history the first 2 sessions
    writehistory(st.session_state.logfilename,f'{str(datetime.datetime.now())}\n\nYour own LocalGPT with ๐ŸŒ€ {model_name}\n---\n๐Ÿง ๐Ÿซก: You are a helpful assistant.')
    writehistory(st.session_state.logfilename,f'๐ŸŒ€: How may I help you today?')


def writehistory(filename,text):
    try:
        with open(filename, 'a', encoding='utf-8') as f:
            f.write(text)
            f.write('\n')
        f.close()
    except Exception as e:
        print(f"Error writing to log file: {e}") # Log error to console

def genRANstring(n):
    """
    n = int number of char to randomize
    """
    N = n
    res = ''.join(random.choices(string.ascii_uppercase +
                                string.digits, k=N))
    return res
#

@st.cache_resource
def create_chat():
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        ov_model = OVModelForCausalLM.from_pretrained(
            model_id = model_id,
            device='CPU',
            ov_config={"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""},  # OpenVINO config
            config=AutoConfig.from_pretrained(model_id)
        )
        #Credit to https://github.com/openvino-dev-samples/chatglm3.openvino/blob/main/chat.py
        streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
        return tokenizer, ov_model, streamer
    except Exception as e:
        st.error(f"Error loading model: {e}")
        return None, None, None # Return None values to indicate failure

@st.cache_resource
def countTokens(text):
    encoding = tiktoken.get_encoding("cl100k_base")  # context_count = len(encoding.encode(yourtext))
    numoftokens = len(encoding.encode(text))
    return numoftokens


#AVATARS - using emojis instead of images
av_us =  "๐Ÿ‘ค"  # User avatar emoji
av_ass = "๐Ÿค–"  # Assistant avatar emoji
nCTX = 8192
### START STREAMLIT UI
# Create a header element - using markdown instead of image
st.header(f"๐ŸŒŸ {model_name} Chatbot")
st.markdown(f"> *๐ŸŒŸ {model_name} with {nCTX} tokens Context window* - Turn based Chat available with max capacity of :orange[**{st.session_state.maxTurns} messages**].", unsafe_allow_html=True)
st.markdown(f"#### Powered by OpenVINO")

# CREATE THE SIDEBAR - using markdown and text instead of images
with st.sidebar:
    st.subheader("Configuration") # Sidebar header
    # st.image('images/banner.png', use_column_width=True) # Removed image
    st.markdown("---")
    st.markdown("**Model Parameters**")
    st.session_state.temperature = st.slider('Temperature:', min_value=0.0, max_value=1.0, value=0.65, step=0.01)
    st.session_state.maxlength = st.slider('Length reply:', min_value=150, max_value=2000,
                                           value=550, step=50)
    st.session_state.repeat = st.slider('Repeat Penalty:', min_value=0.0, max_value=2.0, value=1.176, step=0.02)
    st.markdown("---")
    st.markdown("**Chat Options**")
    st.session_state.turns = st.toggle('Turn based', value=False, help='Activate Conversational Turn Chat with History',
                                       disabled=False, label_visibility="visible")
    st.markdown(f"*Number of Max Turns*: {st.session_state.maxTurns}")
    actualTurns = st.markdown(f"*Chat History Lenght*: :green[Good]")
    statspeed = st.markdown(f'๐Ÿ’ซ speed: {st.session_state.speed}  t/s')
    btnClear = st.button("Clear History",type="primary", use_container_width=True)
    st.markdown("---")
    st.markdown("**Logs**")
    st.markdown(f"**Logfile**: {st.session_state.logfilename}")

tokenizer, ov_model, streamer = create_chat()

if tokenizer and ov_model and streamer: # Only proceed if model loading was successful
    # Display chat messages from history on app rerun
    for message in st.session_state.chatMessages:
        if message["role"] == "user":
            with st.chat_message(message["role"],avatar=av_us):
                st.markdown(message["content"])
        else:
            with st.chat_message(message["role"],avatar=av_ass):
                st.markdown(message["content"])

    # Accept user input using text_area and form for more dynamic updates
    with st.form(key='chat_form', clear_on_submit=False): # clear_on_submit=False ์ค‘์š”! ํผ ๋‚ด์šฉ ์œ ์ง€, ์ œ์ถœ ๋ฒ„ํŠผ ์ œ๊ฑฐ
        myprompt = st.text_area("What is an AI model?", key="prompt_input", height=100) # text_area ์‚ฌ์šฉ


    if myprompt: # myprompt ๊ฐ€ ์ž…๋ ฅ๋˜๋ฉด (text_area ๋‚ด์šฉ์ด ๋ณ€๊ฒฝ๋˜๋ฉด)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": myprompt})
        st.session_state.chatMessages.append({"role": "user", "content": myprompt})
        st.session_state.numOfTurns = len(st.session_state.messages)
        # Display user message in chat message container
        with st.chat_message("user", avatar=av_us):
            st.markdown(myprompt)
            usertext = f"user: {myprompt}"
            writehistory(st.session_state.logfilename,usertext)
            # Display assistant response in chat message container
        with st.chat_message("assistant",avatar=av_ass):
            message_placeholder = st.empty()
            with st.spinner("Thinking..."):
                start = datetime.datetime.now()
                response = ''
                conv_messages = []
                if st.session_state.turns:
                    if st.session_state.numOfTurns > st.session_state.maxTurns:
                        conv_messages = st.session_state.messages[-st.session_state.maxTurns:]
                        actualTurns.markdown(f"*Chat History Lenght*: :red[Trimmed]")
                    else:
                        conv_messages = st.session_state.messages
                else:
                    conv_messages.append(st.session_state.messages[-1])

                full_response = ""
                model_inputs = tokenizer.apply_chat_template(conv_messages,
                                                            add_generation_prompt=True,
                                                            tokenize=True,
                                                            return_tensors="pt")
                generate_kwargs = dict(input_ids=model_inputs,
                                        max_new_tokens=st.session_state.maxlength,
                                        temperature=st.session_state.temperature,
                                        do_sample=True,
                                        top_p=0.5,
                                        repetition_penalty=st.session_state.repeat,
                                        streamer=streamer)

                # ๋น„๋™๊ธฐ์ ์œผ๋กœ ๋ชจ๋ธ ์ƒ์„ฑ ์‹คํ–‰ (asyncio ์‚ฌ์šฉ)
                async def generate_response():
                    t1 = Thread(target=ov_model.generate, kwargs=generate_kwargs)
                    t1.start()
                    start_time = datetime.datetime.now()
                    partial_text = ""
                    first_token = 0
                    for chunk in streamer:
                        if first_token == 0:
                            ttft = datetime.datetime.now() - start_time
                            first_token = 1
                        for char in chunk:
                            partial_text += char
                            message_placeholder.markdown(partial_text + "๐ŸŸก")
                            sleep(0.005) # ๋” ๋น ๋ฅธ ํƒ€์ž๊ธฐ ํšจ๊ณผ (0.005์ดˆ๋กœ ๊ฐ์†Œ, ํ•„์š”์— ๋”ฐ๋ผ ์กฐ์ ˆ)
                        full_response += chunk

                        delta_time = datetime.datetime.now() - start_time
                        total_seconds = delta_time.total_seconds()
                        prompt_tokens = len(encoding.encode(myprompt))
                        assistant_tokens = len(encoding.encode(full_response))
                        total_tokens = prompt_tokens + assistant_tokens
                        st.session_state.speed = total_tokens / total_seconds
                        statspeed.markdown(f'๐Ÿ’ซ speed: {st.session_state.speed:.2f}  t/s')

                    delta_time = datetime.datetime.now() - start_time
                    prompt_tokens = len(encoding.encode(myprompt))
                    assistant_tokens = len(encoding.encode(full_response))

                    message_placeholder.markdown(full_response) # Display only the response, without stats
                    asstext = f"assistant: {full_response}"
                    writehistory(st.session_state.logfilename, asstext)
                    st.session_state.messages.append({"role": "assistant", "content": full_response})
                    st.session_state.chatMessages.append({"role": "assistant", "content": full_response}) # Store just the response
                    st.session_state.numOfTurns = len(st.session_state.messages)

                asyncio.run(generate_response()) # ๋น„๋™๊ธฐ ํ•จ์ˆ˜ ์‹คํ–‰

    if btnClear: # Clear History ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ
        st.session_state.messages = []
        st.session_state.chatMessages = []
        st.session_state.numOfTurns = 0
        st.rerun() # Streamlit ์•ฑ ๋‹ค์‹œ ์‹คํ–‰
else:
    st.error("Model initialization failed. Please check the logs for details.")