Spaces:
Sleeping
Sleeping
File size: 11,212 Bytes
f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 f5b4640 2dff707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from optimum.intel.openvino import OVModelForCausalLM
from transformers import AutoTokenizer, AutoConfig
from threading import Thread
from transformers import TextIteratorStreamer
import streamlit as st
import warnings
warnings.filterwarnings(action='ignore')
import datetime
import random
import string
from time import sleep
import tiktoken
import asyncio # ๋น๋๊ธฐ ์ฒ๋ฆฌ๋ฅผ ์ํด asyncio ์ถ๊ฐ
# requirements.txt ํ์ผ ํ์:
# optimum[openvino]
# transformers
# streamlit
# tiktoken
# asyncio
# ํ ํฐ ์ ๊ณ์ฐ์ ์ํ ์ธ์ฝ๋ฉ ์ค์
encoding = tiktoken.get_encoding("cl100k_base")
# ๋ชจ๋ธ ์ด๋ฆ ๋ฐ ID ์ค์ (๋ณ์ ํต์ผ)
model_name = "Gemma2-2B-it"
model_id = "AIFunOver/gemma-2-2b-it-openvino-4bit" # Hugging Face Hub ๋ชจ๋ธ ID
# ์นํ์ด์ง ๊ธฐ๋ณธ ์ค์
st.set_page_config(
page_title=f"Your LocalGPT โจ with {model_name}",
page_icon="๐",
layout="wide")
# Session State ์ด๊ธฐํ (Hugging Face Space ์ฌ์คํ ์ ์ํ ์ ์ง)
if "hf_model" not in st.session_state:
st.session_state.hf_model = model_name
if "messages" not in st.session_state:
st.session_state.messages = []
if "chatMessages" not in st.session_state:
st.session_state.chatMessages = []
if "repeat" not in st.session_state:
st.session_state.repeat = 1.35
if "temperature" not in st.session_state:
st.session_state.temperature = 0.1
if "maxlength" not in st.session_state:
st.session_state.maxlength = 500
if "speed" not in st.session_state:
st.session_state.speed = 0.0
if "numOfTurns" not in st.session_state:
st.session_state.numOfTurns = 0
if "maxTurns" not in st.session_state:
st.session_state.maxTurns = 5 # must be odd number, greater than equal to 5
if "logfilename" not in st.session_state:
## Logger file
logfile = f'logs/Gemma2-2B_{genRANstring(5)}_log.txt' # Space ๋ฃจํธ์ logs ํด๋์ ์ ์ฅ
st.session_state.logfilename = logfile
# Write in the history the first 2 sessions
writehistory(st.session_state.logfilename,f'{str(datetime.datetime.now())}\n\nYour own LocalGPT with ๐ {model_name}\n---\n๐ง ๐ซก: You are a helpful assistant.')
writehistory(st.session_state.logfilename,f'๐: How may I help you today?')
def writehistory(filename,text):
try:
with open(filename, 'a', encoding='utf-8') as f:
f.write(text)
f.write('\n')
f.close()
except Exception as e:
print(f"Error writing to log file: {e}") # Log error to console
def genRANstring(n):
"""
n = int number of char to randomize
"""
N = n
res = ''.join(random.choices(string.ascii_uppercase +
string.digits, k=N))
return res
#
@st.cache_resource
def create_chat():
try:
tokenizer = AutoTokenizer.from_pretrained(model_id)
ov_model = OVModelForCausalLM.from_pretrained(
model_id = model_id,
device='CPU',
ov_config={"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}, # OpenVINO config
config=AutoConfig.from_pretrained(model_id)
)
#Credit to https://github.com/openvino-dev-samples/chatglm3.openvino/blob/main/chat.py
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
return tokenizer, ov_model, streamer
except Exception as e:
st.error(f"Error loading model: {e}")
return None, None, None # Return None values to indicate failure
@st.cache_resource
def countTokens(text):
encoding = tiktoken.get_encoding("cl100k_base") # context_count = len(encoding.encode(yourtext))
numoftokens = len(encoding.encode(text))
return numoftokens
#AVATARS - using emojis instead of images
av_us = "๐ค" # User avatar emoji
av_ass = "๐ค" # Assistant avatar emoji
nCTX = 8192
### START STREAMLIT UI
# Create a header element - using markdown instead of image
st.header(f"๐ {model_name} Chatbot")
st.markdown(f"> *๐ {model_name} with {nCTX} tokens Context window* - Turn based Chat available with max capacity of :orange[**{st.session_state.maxTurns} messages**].", unsafe_allow_html=True)
st.markdown(f"#### Powered by OpenVINO")
# CREATE THE SIDEBAR - using markdown and text instead of images
with st.sidebar:
st.subheader("Configuration") # Sidebar header
# st.image('images/banner.png', use_column_width=True) # Removed image
st.markdown("---")
st.markdown("**Model Parameters**")
st.session_state.temperature = st.slider('Temperature:', min_value=0.0, max_value=1.0, value=0.65, step=0.01)
st.session_state.maxlength = st.slider('Length reply:', min_value=150, max_value=2000,
value=550, step=50)
st.session_state.repeat = st.slider('Repeat Penalty:', min_value=0.0, max_value=2.0, value=1.176, step=0.02)
st.markdown("---")
st.markdown("**Chat Options**")
st.session_state.turns = st.toggle('Turn based', value=False, help='Activate Conversational Turn Chat with History',
disabled=False, label_visibility="visible")
st.markdown(f"*Number of Max Turns*: {st.session_state.maxTurns}")
actualTurns = st.markdown(f"*Chat History Lenght*: :green[Good]")
statspeed = st.markdown(f'๐ซ speed: {st.session_state.speed} t/s')
btnClear = st.button("Clear History",type="primary", use_container_width=True)
st.markdown("---")
st.markdown("**Logs**")
st.markdown(f"**Logfile**: {st.session_state.logfilename}")
tokenizer, ov_model, streamer = create_chat()
if tokenizer and ov_model and streamer: # Only proceed if model loading was successful
# Display chat messages from history on app rerun
for message in st.session_state.chatMessages:
if message["role"] == "user":
with st.chat_message(message["role"],avatar=av_us):
st.markdown(message["content"])
else:
with st.chat_message(message["role"],avatar=av_ass):
st.markdown(message["content"])
# Accept user input using text_area and form for more dynamic updates
with st.form(key='chat_form', clear_on_submit=False): # clear_on_submit=False ์ค์! ํผ ๋ด์ฉ ์ ์ง, ์ ์ถ ๋ฒํผ ์ ๊ฑฐ
myprompt = st.text_area("What is an AI model?", key="prompt_input", height=100) # text_area ์ฌ์ฉ
if myprompt: # myprompt ๊ฐ ์
๋ ฅ๋๋ฉด (text_area ๋ด์ฉ์ด ๋ณ๊ฒฝ๋๋ฉด)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": myprompt})
st.session_state.chatMessages.append({"role": "user", "content": myprompt})
st.session_state.numOfTurns = len(st.session_state.messages)
# Display user message in chat message container
with st.chat_message("user", avatar=av_us):
st.markdown(myprompt)
usertext = f"user: {myprompt}"
writehistory(st.session_state.logfilename,usertext)
# Display assistant response in chat message container
with st.chat_message("assistant",avatar=av_ass):
message_placeholder = st.empty()
with st.spinner("Thinking..."):
start = datetime.datetime.now()
response = ''
conv_messages = []
if st.session_state.turns:
if st.session_state.numOfTurns > st.session_state.maxTurns:
conv_messages = st.session_state.messages[-st.session_state.maxTurns:]
actualTurns.markdown(f"*Chat History Lenght*: :red[Trimmed]")
else:
conv_messages = st.session_state.messages
else:
conv_messages.append(st.session_state.messages[-1])
full_response = ""
model_inputs = tokenizer.apply_chat_template(conv_messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt")
generate_kwargs = dict(input_ids=model_inputs,
max_new_tokens=st.session_state.maxlength,
temperature=st.session_state.temperature,
do_sample=True,
top_p=0.5,
repetition_penalty=st.session_state.repeat,
streamer=streamer)
# ๋น๋๊ธฐ์ ์ผ๋ก ๋ชจ๋ธ ์์ฑ ์คํ (asyncio ์ฌ์ฉ)
async def generate_response():
t1 = Thread(target=ov_model.generate, kwargs=generate_kwargs)
t1.start()
start_time = datetime.datetime.now()
partial_text = ""
first_token = 0
for chunk in streamer:
if first_token == 0:
ttft = datetime.datetime.now() - start_time
first_token = 1
for char in chunk:
partial_text += char
message_placeholder.markdown(partial_text + "๐ก")
sleep(0.005) # ๋ ๋น ๋ฅธ ํ์๊ธฐ ํจ๊ณผ (0.005์ด๋ก ๊ฐ์, ํ์์ ๋ฐ๋ผ ์กฐ์ )
full_response += chunk
delta_time = datetime.datetime.now() - start_time
total_seconds = delta_time.total_seconds()
prompt_tokens = len(encoding.encode(myprompt))
assistant_tokens = len(encoding.encode(full_response))
total_tokens = prompt_tokens + assistant_tokens
st.session_state.speed = total_tokens / total_seconds
statspeed.markdown(f'๐ซ speed: {st.session_state.speed:.2f} t/s')
delta_time = datetime.datetime.now() - start_time
prompt_tokens = len(encoding.encode(myprompt))
assistant_tokens = len(encoding.encode(full_response))
message_placeholder.markdown(full_response) # Display only the response, without stats
asstext = f"assistant: {full_response}"
writehistory(st.session_state.logfilename, asstext)
st.session_state.messages.append({"role": "assistant", "content": full_response})
st.session_state.chatMessages.append({"role": "assistant", "content": full_response}) # Store just the response
st.session_state.numOfTurns = len(st.session_state.messages)
asyncio.run(generate_response()) # ๋น๋๊ธฐ ํจ์ ์คํ
if btnClear: # Clear History ๋ฒํผ ํด๋ฆญ ์
st.session_state.messages = []
st.session_state.chatMessages = []
st.session_state.numOfTurns = 0
st.rerun() # Streamlit ์ฑ ๋ค์ ์คํ
else:
st.error("Model initialization failed. Please check the logs for details.") |