kiwhansong's picture
complete task 1
11554c5
raw
history blame
8.07 kB
from pathlib import Path
import spaces
import gradio as gr
import imageio
import torch
from PIL import Image
from omegaconf import OmegaConf
from algorithms.dfot import DFoTVideoPose
from utils.ckpt_utils import download_pretrained
from datasets.video.utils.io import read_video
from datasets.video import RealEstate10KAdvancedVideoDataset
from export import export_to_video
DATASET_DIR = Path("data/real-estate-10k-tiny")
LONG_LENGTH = 20 # seconds
metadata = torch.load(DATASET_DIR / "metadata" / "test.pt", weights_only=False)
video_list = [
read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
]
first_frame_list = [
(video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
for video in video_list
]
poses_list = [
torch.cat(
[
poses[:, :4],
poses[:, 6:],
],
dim=-1,
).to(torch.float32)
for poses in (
torch.load(DATASET_DIR / "test_poses" / f"{path.stem}.pt")
for path in metadata["video_paths"]
)
]
# pylint: disable-next=no-value-for-parameter
dfot = DFoTVideoPose.load_from_checkpoint(
checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
cfg=OmegaConf.load("config.yaml"),
).eval()
dfot.to("cuda")
def prepare_long_gt_video(idx: int):
video = video_list[idx]
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * 10, dtype=torch.long)
return export_to_video(video[indices], fps=10)
@spaces.GPU(duration=120)
@torch.no_grad()
def single_image_to_long_video(idx: int, guidance_scale: float, fps: int, progress=gr.Progress(track_tqdm=True)):
video = video_list[idx]
poses = poses_list[idx]
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
xs = video[indices].unsqueeze(0).to("cuda")
conditions = poses[indices].unsqueeze(0).to("cuda")
dfot.cfg.tasks.prediction.history_guidance.guidance_scale = guidance_scale
dfot.cfg.tasks.prediction.keyframe_density = 0.6 / fps
# dfot.cfg.tasks.interpolation.history_guidance.guidance_scale = guidance_scale
gen_video = dfot._unnormalize_x(
dfot._predict_videos(
dfot._normalize_x(xs),
conditions,
)
)
return export_to_video(gen_video[0].detach().cpu(), fps=fps)
# Create the Gradio Blocks
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
gr.HTML(
"""
<style>
[data-tab-id="task-1"], [data-tab-id="task-2"], [data-tab-id="task-3"] {
font-size: 16px !important;
font-weight: bold;
}
</style>
"""
)
gr.Markdown("# Diffusion Forcing Transformer and History Guidance")
gr.Markdown(
"### Official Interactive Demo for [_History-guided Video Diffusion_](todo)"
)
with gr.Row():
gr.Button(value="🌐 Website", link="todo")
gr.Button(value="📄 Paper", link="https://boyuan.space/history-guidance")
gr.Button(
value="💻 Code",
link="https://github.com/kwsong0113/diffusion-forcing-transformer",
)
gr.Button(
value="🤗 Pretrained Models", link="https://huggingface.co/kiwhansong/DFoT"
)
with gr.Tab("Single Image → Long Video", id="task-1"):
gr.Markdown(
"""
## Demo 2: Single Image → Long Video
> #### **TL;DR:** _Diffusion Forcing Transformer, with History Guidance, can stably generate long videos, via sliding window rollouts and interpolation._
"""
)
stage = gr.State(value="Selection")
selected_index = gr.State(value=None)
@gr.render(inputs=[stage, selected_index])
def render_stage(s, idx):
match s:
case "Selection":
image_gallery = gr.Gallery(
value=first_frame_list,
label="Select an image to animate",
columns=[8],
selected_index=idx,
)
@image_gallery.select(inputs=None, outputs=selected_index)
def update_selection(selection: gr.SelectData):
return selection.index
select_button = gr.Button("Select")
@select_button.click(inputs=selected_index, outputs=stage)
def move_to_generation(idx: int):
if idx is None:
gr.Warning("Image not selected!")
return "Selection"
else:
return "Generation"
case "Generation":
with gr.Row():
gr.Image(value=first_frame_list[idx], label="Input Image")
# gr.Video(value=metadata["video_paths"][idx], label="Ground Truth Video")
gr.Video(value=prepare_long_gt_video(idx), label="Ground Truth Video")
video = gr.Video(label="Generated Video")
with gr.Column():
guidance_scale = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=0.5,
label="History Guidance Scale",
info="Without history guidance: 1.0; Recommended: 4.0",
interactive=True,
)
fps = gr.Slider(
minimum=1,
maximum=10,
value=4,
step=1,
label="FPS",
info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
interactive=True,
)
generate_button = gr.Button("Generate Video").click(
fn=single_image_to_long_video,
inputs=[selected_index, guidance_scale, fps],
outputs=video,
)
# def generate_video(idx: int):
# gr.Video(value=single_image_to_long_video(idx))
# Function to update the state with the selected index
# def show_warning(selection: gr.SelectData):
# gr.Warning(f"Your choice is #{selection.index}, with image: {selection.value['image']['path']}!")
# # image_gallery.select(fn=show_warning, inputs=None)
# # Show the generate button only if an image is selected
# selected_index.change(fn=lambda idx: idx is not None, inputs=selected_index, outputs=generate_button)
with gr.Tab("Any Images → Video", id="task-2"):
gr.Markdown(
"""
## Demo 1: Any Images → Video
> #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
"""
)
input_text_1 = gr.Textbox(
lines=2, placeholder="Enter text for Video Model 1..."
)
output_video_1 = gr.Video()
generate_button_1 = gr.Button("Generate Video")
with gr.Tab("Single Image → Extremely Long Video", id="task-3"):
gr.Markdown(
"""
## Demo 3: Single Image → Extremely Long Video
> #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given **variable number of context frames**._
"""
)
input_text_2 = gr.Textbox(
lines=2, placeholder="Enter text for Video Model 2..."
)
output_video_2 = gr.Video()
generate_button_2 = gr.Button("Generate Video")
if __name__ == "__main__":
demo.launch()