Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5eea811
1
Parent(s):
78c8e0b
finish task 1
Browse files- app.py +269 -75
- config.yaml +2 -2
- export.py +32 -0
app.py
CHANGED
@@ -1,21 +1,24 @@
|
|
|
|
1 |
from pathlib import Path
|
|
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
import torch
|
6 |
from torchvision.datasets.utils import download_and_extract_archive
|
7 |
from PIL import Image
|
8 |
from omegaconf import OmegaConf
|
9 |
from algorithms.dfot import DFoTVideoPose
|
|
|
10 |
from utils.ckpt_utils import download_pretrained
|
11 |
from utils.huggingface_utils import download_from_hf
|
12 |
from datasets.video.utils.io import read_video
|
13 |
from datasets.video import RealEstate10KAdvancedVideoDataset
|
14 |
-
from export import export_to_video
|
15 |
|
16 |
DATASET_URL = "https://huggingface.co/kiwhansong/DFoT/resolve/main/datasets/RealEstate10K_Tiny.tar.gz"
|
17 |
DATASET_DIR = Path("data/real-estate-10k-tiny")
|
18 |
-
LONG_LENGTH = 20
|
19 |
|
20 |
if not DATASET_DIR.exists():
|
21 |
DATASET_DIR.mkdir(parents=True)
|
@@ -30,10 +33,6 @@ metadata = torch.load(DATASET_DIR / "metadata" / "test.pt", weights_only=False)
|
|
30 |
video_list = [
|
31 |
read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
|
32 |
]
|
33 |
-
first_frame_list = [
|
34 |
-
(video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
|
35 |
-
for video in video_list
|
36 |
-
]
|
37 |
poses_list = [
|
38 |
torch.cat(
|
39 |
[
|
@@ -48,6 +47,18 @@ poses_list = [
|
|
48 |
)
|
49 |
]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# pylint: disable-next=no-value-for-parameter
|
52 |
dfot = DFoTVideoPose.load_from_checkpoint(
|
53 |
checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
|
@@ -55,14 +66,38 @@ dfot = DFoTVideoPose.load_from_checkpoint(
|
|
55 |
).eval()
|
56 |
dfot.to("cuda")
|
57 |
|
|
|
58 |
def prepare_long_gt_video(idx: int):
|
59 |
video = video_list[idx]
|
60 |
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * 10, dtype=torch.long)
|
61 |
return export_to_video(video[indices], fps=10)
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
@torch.no_grad()
|
65 |
-
def single_image_to_long_video(
|
|
|
|
|
66 |
video = video_list[idx]
|
67 |
poses = poses_list[idx]
|
68 |
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
|
@@ -80,6 +115,43 @@ def single_image_to_long_video(idx: int, guidance_scale: float, fps: int, progre
|
|
80 |
return export_to_video(gen_video[0].detach().cpu(), fps=fps)
|
81 |
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# Create the Gradio Blocks
|
84 |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
|
85 |
gr.HTML(
|
@@ -108,51 +180,199 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
|
|
108 |
value="🤗 Pretrained Models", link="https://huggingface.co/kiwhansong/DFoT"
|
109 |
)
|
110 |
|
111 |
-
with gr.
|
|
|
|
|
|
|
112 |
gr.Markdown(
|
113 |
"""
|
114 |
-
## Demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
> #### **TL;DR:** _Diffusion Forcing Transformer, with History Guidance, can stably generate long videos, via sliding window rollouts and interpolation._
|
116 |
"""
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
|
122 |
-
@gr.render(inputs=[
|
123 |
def render_stage(s, idx):
|
124 |
match s:
|
125 |
case "Selection":
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
case "Generation":
|
148 |
with gr.Row():
|
149 |
-
gr.Image(
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
with gr.
|
155 |
-
|
|
|
|
|
156 |
minimum=1,
|
157 |
maximum=6,
|
158 |
value=4,
|
@@ -161,7 +381,7 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
|
|
161 |
info="Without history guidance: 1.0; Recommended: 4.0",
|
162 |
interactive=True,
|
163 |
)
|
164 |
-
|
165 |
minimum=1,
|
166 |
maximum=10,
|
167 |
value=4,
|
@@ -170,49 +390,23 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
|
|
170 |
info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
|
171 |
interactive=True,
|
172 |
)
|
173 |
-
|
174 |
fn=single_image_to_long_video,
|
175 |
-
inputs=[
|
176 |
-
|
|
|
|
|
|
|
|
|
177 |
)
|
178 |
-
# def generate_video(idx: int):
|
179 |
-
# gr.Video(value=single_image_to_long_video(idx))
|
180 |
-
|
181 |
-
# Function to update the state with the selected index
|
182 |
-
|
183 |
-
# def show_warning(selection: gr.SelectData):
|
184 |
-
# gr.Warning(f"Your choice is #{selection.index}, with image: {selection.value['image']['path']}!")
|
185 |
-
|
186 |
-
# # image_gallery.select(fn=show_warning, inputs=None)
|
187 |
-
|
188 |
-
# # Show the generate button only if an image is selected
|
189 |
-
# selected_index.change(fn=lambda idx: idx is not None, inputs=selected_index, outputs=generate_button)
|
190 |
-
|
191 |
-
with gr.Tab("Any Images → Video", id="task-2"):
|
192 |
-
gr.Markdown(
|
193 |
-
"""
|
194 |
-
## Demo 1: Any Images → Video
|
195 |
-
> #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
|
196 |
-
"""
|
197 |
-
)
|
198 |
-
input_text_1 = gr.Textbox(
|
199 |
-
lines=2, placeholder="Enter text for Video Model 1..."
|
200 |
-
)
|
201 |
-
output_video_1 = gr.Video()
|
202 |
-
generate_button_1 = gr.Button("Generate Video")
|
203 |
|
204 |
with gr.Tab("Single Image → Extremely Long Video", id="task-3"):
|
205 |
gr.Markdown(
|
206 |
"""
|
207 |
## Demo 3: Single Image → Extremely Long Video
|
208 |
-
> #### **TL;DR:**
|
209 |
"""
|
210 |
)
|
211 |
-
input_text_2 = gr.Textbox(
|
212 |
-
lines=2, placeholder="Enter text for Video Model 2..."
|
213 |
-
)
|
214 |
-
output_video_2 = gr.Video()
|
215 |
-
generate_button_2 = gr.Button("Generate Video")
|
216 |
|
217 |
if __name__ == "__main__":
|
218 |
demo.launch()
|
|
|
1 |
+
from typing import List
|
2 |
from pathlib import Path
|
3 |
+
from functools import partial
|
4 |
import spaces
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
import torch
|
8 |
from torchvision.datasets.utils import download_and_extract_archive
|
9 |
from PIL import Image
|
10 |
from omegaconf import OmegaConf
|
11 |
from algorithms.dfot import DFoTVideoPose
|
12 |
+
from algorithms.dfot.history_guidance import HistoryGuidance
|
13 |
from utils.ckpt_utils import download_pretrained
|
14 |
from utils.huggingface_utils import download_from_hf
|
15 |
from datasets.video.utils.io import read_video
|
16 |
from datasets.video import RealEstate10KAdvancedVideoDataset
|
17 |
+
from export import export_to_video, export_to_gif, export_images_to_gif
|
18 |
|
19 |
DATASET_URL = "https://huggingface.co/kiwhansong/DFoT/resolve/main/datasets/RealEstate10K_Tiny.tar.gz"
|
20 |
DATASET_DIR = Path("data/real-estate-10k-tiny")
|
21 |
+
LONG_LENGTH = 20 # seconds
|
22 |
|
23 |
if not DATASET_DIR.exists():
|
24 |
DATASET_DIR.mkdir(parents=True)
|
|
|
33 |
video_list = [
|
34 |
read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
|
35 |
]
|
|
|
|
|
|
|
|
|
36 |
poses_list = [
|
37 |
torch.cat(
|
38 |
[
|
|
|
47 |
)
|
48 |
]
|
49 |
|
50 |
+
first_frame_list = [
|
51 |
+
(video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
|
52 |
+
for video in video_list
|
53 |
+
]
|
54 |
+
gif_paths = []
|
55 |
+
for idx, video, path in zip(
|
56 |
+
range(len(video_list)), video_list, metadata["video_paths"]
|
57 |
+
):
|
58 |
+
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
|
59 |
+
gif_paths.append(export_to_gif(video[indices], fps=4))
|
60 |
+
|
61 |
+
|
62 |
# pylint: disable-next=no-value-for-parameter
|
63 |
dfot = DFoTVideoPose.load_from_checkpoint(
|
64 |
checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
|
|
|
66 |
).eval()
|
67 |
dfot.to("cuda")
|
68 |
|
69 |
+
|
70 |
def prepare_long_gt_video(idx: int):
|
71 |
video = video_list[idx]
|
72 |
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * 10, dtype=torch.long)
|
73 |
return export_to_video(video[indices], fps=10)
|
74 |
|
75 |
+
|
76 |
+
def prepare_short_gt_video(idx: int):
|
77 |
+
video = video_list[idx]
|
78 |
+
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
|
79 |
+
video = (
|
80 |
+
(video[indices].permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
|
81 |
+
)
|
82 |
+
return [video[i] for i in range(video.shape[0])]
|
83 |
+
|
84 |
+
|
85 |
+
def video_to_gif_and_images(video, indices):
|
86 |
+
masked_video = [
|
87 |
+
image if i in indices else np.zeros_like(image) for i, image in enumerate(video)
|
88 |
+
]
|
89 |
+
return [(export_images_to_gif(masked_video), "GIF")] + [
|
90 |
+
(image, f"t={i}" if i in indices else "")
|
91 |
+
for i, image in enumerate(masked_video)
|
92 |
+
]
|
93 |
+
|
94 |
+
|
95 |
+
@spaces.GPU(duration=300)
|
96 |
+
@torch.autocast("cuda")
|
97 |
@torch.no_grad()
|
98 |
+
def single_image_to_long_video(
|
99 |
+
idx: int, guidance_scale: float, fps: int, progress=gr.Progress(track_tqdm=True)
|
100 |
+
):
|
101 |
video = video_list[idx]
|
102 |
poses = poses_list[idx]
|
103 |
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
|
|
|
115 |
return export_to_video(gen_video[0].detach().cpu(), fps=fps)
|
116 |
|
117 |
|
118 |
+
@spaces.GPU(duration=100)
|
119 |
+
@torch.autocast("cuda")
|
120 |
+
@torch.no_grad()
|
121 |
+
def any_images_to_short_video(
|
122 |
+
scene_idx: int,
|
123 |
+
image_indices: List[int],
|
124 |
+
guidance_scale: float,
|
125 |
+
progress=gr.Progress(track_tqdm=True),
|
126 |
+
):
|
127 |
+
video = video_list[scene_idx]
|
128 |
+
poses = poses_list[scene_idx]
|
129 |
+
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
|
130 |
+
xs = video[indices].unsqueeze(0).to("cuda")
|
131 |
+
conditions = poses[indices].unsqueeze(0).to("cuda")
|
132 |
+
gen_video = dfot._unnormalize_x(
|
133 |
+
dfot._sample_sequence(
|
134 |
+
batch_size=1,
|
135 |
+
context=dfot._normalize_x(xs),
|
136 |
+
context_mask=torch.tensor([i in image_indices for i in range(8)])
|
137 |
+
.unsqueeze(0)
|
138 |
+
.to("cuda"),
|
139 |
+
conditions=conditions,
|
140 |
+
history_guidance=HistoryGuidance.vanilla(
|
141 |
+
guidance_scale=guidance_scale,
|
142 |
+
visualize=False,
|
143 |
+
),
|
144 |
+
)[0]
|
145 |
+
)
|
146 |
+
gen_video = (
|
147 |
+
(gen_video[0].detach().cpu().permute(0, 2, 3, 1) * 255)
|
148 |
+
.clamp(0, 255)
|
149 |
+
.to(torch.uint8)
|
150 |
+
.numpy()
|
151 |
+
)
|
152 |
+
return video_to_gif_and_images([image for image in gen_video], list(range(8)))
|
153 |
+
|
154 |
+
|
155 |
# Create the Gradio Blocks
|
156 |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
|
157 |
gr.HTML(
|
|
|
180 |
value="🤗 Pretrained Models", link="https://huggingface.co/kiwhansong/DFoT"
|
181 |
)
|
182 |
|
183 |
+
with gr.Accordion("Troubleshooting: not working or too slow?", open=False):
|
184 |
+
gr.Markdown("TODO")
|
185 |
+
|
186 |
+
with gr.Tab("Any # of Images → Short Video", id="task-1"):
|
187 |
gr.Markdown(
|
188 |
"""
|
189 |
+
## Demo 1: Any Number of Images → Short 2-second Video
|
190 |
+
> #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
|
191 |
+
"""
|
192 |
+
)
|
193 |
+
|
194 |
+
demo1_stage = gr.State(value="Scene")
|
195 |
+
demo1_selected_scene_index = gr.State(value=None)
|
196 |
+
demo1_selected_image_indices = gr.State(value=[])
|
197 |
+
|
198 |
+
@gr.render(
|
199 |
+
inputs=[
|
200 |
+
demo1_stage,
|
201 |
+
demo1_selected_scene_index,
|
202 |
+
demo1_selected_image_indices,
|
203 |
+
]
|
204 |
+
)
|
205 |
+
def render_stage(s, scene_idx, image_indices):
|
206 |
+
match s:
|
207 |
+
case "Scene":
|
208 |
+
with gr.Group():
|
209 |
+
demo1_scene_gallery = gr.Gallery(
|
210 |
+
height=300,
|
211 |
+
value=gif_paths,
|
212 |
+
label="Select a Scene to Generate Video",
|
213 |
+
columns=[8],
|
214 |
+
selected_index=scene_idx,
|
215 |
+
)
|
216 |
+
|
217 |
+
@demo1_scene_gallery.select(
|
218 |
+
inputs=None, outputs=demo1_selected_scene_index
|
219 |
+
)
|
220 |
+
def update_selection(selection: gr.SelectData):
|
221 |
+
return selection.index
|
222 |
+
|
223 |
+
demo1_scene_select_button = gr.Button("Select Scene")
|
224 |
+
|
225 |
+
@demo1_scene_select_button.click(
|
226 |
+
inputs=demo1_selected_scene_index, outputs=demo1_stage
|
227 |
+
)
|
228 |
+
def move_to_image_selection(scene_idx: int):
|
229 |
+
if scene_idx is None:
|
230 |
+
gr.Warning("Scene not selected!")
|
231 |
+
return "Scene"
|
232 |
+
else:
|
233 |
+
return "Image"
|
234 |
+
|
235 |
+
case "Image":
|
236 |
+
with gr.Group():
|
237 |
+
demo1_image_gallery = gr.Gallery(
|
238 |
+
height=150,
|
239 |
+
value=[
|
240 |
+
(image, f"t={i}")
|
241 |
+
for i, image in enumerate(
|
242 |
+
prepare_short_gt_video(scene_idx)
|
243 |
+
)
|
244 |
+
],
|
245 |
+
label="Select Images to Animate",
|
246 |
+
columns=[8],
|
247 |
+
)
|
248 |
+
|
249 |
+
demo1_selector = gr.CheckboxGroup(
|
250 |
+
label="Select Any Number of Input Images",
|
251 |
+
info="Image-to-Video: Select t=0; Interpolation: Select t=0 and t=7",
|
252 |
+
choices=[(f"t={i}", i) for i in range(8)],
|
253 |
+
value=[],
|
254 |
+
)
|
255 |
+
demo1_image_select_button = gr.Button("Select Input Images")
|
256 |
+
|
257 |
+
@demo1_image_select_button.click(
|
258 |
+
inputs=[demo1_selector],
|
259 |
+
outputs=[demo1_stage, demo1_selected_image_indices],
|
260 |
+
)
|
261 |
+
def generate_video(selected_indices):
|
262 |
+
if len(selected_indices) == 0:
|
263 |
+
gr.Warning("Select at least one image!")
|
264 |
+
return "Image", []
|
265 |
+
else:
|
266 |
+
return "Generation", selected_indices
|
267 |
+
|
268 |
+
case "Generation":
|
269 |
+
with gr.Group():
|
270 |
+
gt_video = prepare_short_gt_video(scene_idx)
|
271 |
+
|
272 |
+
demo1_input_image_gallery = gr.Gallery(
|
273 |
+
height=150,
|
274 |
+
value=video_to_gif_and_images(gt_video, image_indices),
|
275 |
+
label="Input Images",
|
276 |
+
columns=[9],
|
277 |
+
)
|
278 |
+
demo1_generated_gallery = gr.Gallery(
|
279 |
+
height=150,
|
280 |
+
value=[],
|
281 |
+
label="Generated Video",
|
282 |
+
columns=[9],
|
283 |
+
)
|
284 |
+
|
285 |
+
demo1_ground_truth_gallery = gr.Gallery(
|
286 |
+
height=150,
|
287 |
+
value=video_to_gif_and_images(gt_video, list(range(8))),
|
288 |
+
label="Ground Truth Video",
|
289 |
+
columns=[9],
|
290 |
+
)
|
291 |
+
with gr.Sidebar():
|
292 |
+
gr.Markdown("### Sampling Parameters")
|
293 |
+
demo1_guidance_scale = gr.Slider(
|
294 |
+
minimum=1,
|
295 |
+
maximum=6,
|
296 |
+
value=4,
|
297 |
+
step=0.5,
|
298 |
+
label="History Guidance Scale",
|
299 |
+
info="Without history guidance: 1.0; Recommended: 4.0",
|
300 |
+
interactive=True,
|
301 |
+
)
|
302 |
+
gr.Button("Generate Video").click(
|
303 |
+
fn=any_images_to_short_video,
|
304 |
+
inputs=[
|
305 |
+
demo1_selected_scene_index,
|
306 |
+
demo1_selected_image_indices,
|
307 |
+
demo1_guidance_scale,
|
308 |
+
],
|
309 |
+
outputs=demo1_generated_gallery,
|
310 |
+
)
|
311 |
+
|
312 |
+
with gr.Tab("Single Image → Long Video", id="task-2"):
|
313 |
+
gr.Markdown(
|
314 |
+
"""
|
315 |
+
## Demo 2: Single Image → Long 20-second Video
|
316 |
> #### **TL;DR:** _Diffusion Forcing Transformer, with History Guidance, can stably generate long videos, via sliding window rollouts and interpolation._
|
317 |
"""
|
318 |
)
|
319 |
|
320 |
+
demo2_stage = gr.State(value="Selection")
|
321 |
+
demo2_selected_index = gr.State(value=None)
|
322 |
|
323 |
+
@gr.render(inputs=[demo2_stage, demo2_selected_index])
|
324 |
def render_stage(s, idx):
|
325 |
match s:
|
326 |
case "Selection":
|
327 |
+
with gr.Group():
|
328 |
+
demo2_image_gallery = gr.Gallery(
|
329 |
+
height=300,
|
330 |
+
value=first_frame_list,
|
331 |
+
label="Select an Image to Animate",
|
332 |
+
columns=[8],
|
333 |
+
selected_index=idx,
|
334 |
+
)
|
335 |
+
|
336 |
+
@demo2_image_gallery.select(
|
337 |
+
inputs=None, outputs=demo2_selected_index
|
338 |
+
)
|
339 |
+
def update_selection(selection: gr.SelectData):
|
340 |
+
return selection.index
|
341 |
+
|
342 |
+
demo2_select_button = gr.Button("Select Input Image")
|
343 |
+
|
344 |
+
@demo2_select_button.click(
|
345 |
+
inputs=demo2_selected_index, outputs=demo2_stage
|
346 |
+
)
|
347 |
+
def move_to_generation(idx: int):
|
348 |
+
if idx is None:
|
349 |
+
gr.Warning("Image not selected!")
|
350 |
+
return "Selection"
|
351 |
+
else:
|
352 |
+
return "Generation"
|
353 |
|
354 |
case "Generation":
|
355 |
with gr.Row():
|
356 |
+
gr.Image(
|
357 |
+
value=first_frame_list[idx],
|
358 |
+
label="Input Image",
|
359 |
+
width=256,
|
360 |
+
height=256,
|
361 |
+
)
|
362 |
+
gr.Video(
|
363 |
+
value=prepare_long_gt_video(idx),
|
364 |
+
label="Ground Truth Video",
|
365 |
+
width=256,
|
366 |
+
height=256,
|
367 |
+
)
|
368 |
+
demo2_video = gr.Video(
|
369 |
+
label="Generated Video", width=256, height=256
|
370 |
+
)
|
371 |
|
372 |
+
with gr.Sidebar():
|
373 |
+
gr.Markdown("### Sampling Parameters")
|
374 |
+
|
375 |
+
demo2_guidance_scale = gr.Slider(
|
376 |
minimum=1,
|
377 |
maximum=6,
|
378 |
value=4,
|
|
|
381 |
info="Without history guidance: 1.0; Recommended: 4.0",
|
382 |
interactive=True,
|
383 |
)
|
384 |
+
demo2_fps = gr.Slider(
|
385 |
minimum=1,
|
386 |
maximum=10,
|
387 |
value=4,
|
|
|
390 |
info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
|
391 |
interactive=True,
|
392 |
)
|
393 |
+
gr.Button("Generate Video").click(
|
394 |
fn=single_image_to_long_video,
|
395 |
+
inputs=[
|
396 |
+
demo2_selected_index,
|
397 |
+
demo2_guidance_scale,
|
398 |
+
demo2_fps,
|
399 |
+
],
|
400 |
+
outputs=demo2_video,
|
401 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
with gr.Tab("Single Image → Extremely Long Video", id="task-3"):
|
404 |
gr.Markdown(
|
405 |
"""
|
406 |
## Demo 3: Single Image → Extremely Long Video
|
407 |
+
> #### **TL;DR:** _TODO._
|
408 |
"""
|
409 |
)
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
if __name__ == "__main__":
|
412 |
demo.launch()
|
config.yaml
CHANGED
@@ -119,9 +119,9 @@ tasks:
|
|
119 |
enabled: false
|
120 |
history_guidance:
|
121 |
name: vanilla
|
122 |
-
guidance_scale: 1
|
123 |
visualize: False
|
124 |
-
max_batch_size:
|
125 |
logging:
|
126 |
deterministic: null
|
127 |
loss_freq: 100
|
|
|
119 |
enabled: false
|
120 |
history_guidance:
|
121 |
name: vanilla
|
122 |
+
guidance_scale: 1
|
123 |
visualize: False
|
124 |
+
max_batch_size: null
|
125 |
logging:
|
126 |
deterministic: null
|
127 |
loss_freq: 100
|
export.py
CHANGED
@@ -1,9 +1,41 @@
|
|
|
|
1 |
import tempfile
|
|
|
2 |
import torch
|
3 |
from torch import Tensor
|
4 |
from torchvision.io import write_video
|
|
|
5 |
|
6 |
def export_to_video(tensor: Tensor, fps: int = 10) -> str:
|
7 |
path = tempfile.NamedTemporaryFile(suffix=".mp4").name
|
8 |
write_video(path, (tensor.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8), fps=fps)
|
9 |
return path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
import tempfile
|
3 |
+
import numpy as np
|
4 |
import torch
|
5 |
from torch import Tensor
|
6 |
from torchvision.io import write_video
|
7 |
+
from PIL import Image
|
8 |
|
9 |
def export_to_video(tensor: Tensor, fps: int = 10) -> str:
|
10 |
path = tempfile.NamedTemporaryFile(suffix=".mp4").name
|
11 |
write_video(path, (tensor.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8), fps=fps)
|
12 |
return path
|
13 |
+
|
14 |
+
def export_to_gif(tensor: Tensor, fps: int = 4) -> str:
|
15 |
+
path = tempfile.NamedTemporaryFile(suffix=".gif").name
|
16 |
+
images = (tensor.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
|
17 |
+
images = [Image.fromarray(image.numpy()) for image in images]
|
18 |
+
|
19 |
+
images[0].save(
|
20 |
+
path,
|
21 |
+
save_all=True,
|
22 |
+
append_images=images[1:],
|
23 |
+
optimize=False,
|
24 |
+
duration=1000 // fps,
|
25 |
+
loop=0,
|
26 |
+
)
|
27 |
+
return path
|
28 |
+
|
29 |
+
def export_images_to_gif(images: List[np.ndarray], fps: int = 4) -> str:
|
30 |
+
path = tempfile.NamedTemporaryFile(suffix=".gif").name
|
31 |
+
images = [Image.fromarray(image) for image in images]
|
32 |
+
|
33 |
+
images[0].save(
|
34 |
+
path,
|
35 |
+
save_all=True,
|
36 |
+
append_images=images[1:],
|
37 |
+
optimize=False,
|
38 |
+
duration=1000 // fps,
|
39 |
+
loop=0,
|
40 |
+
)
|
41 |
+
return path
|