Spaces:
Building
Building
File size: 11,074 Bytes
0c76a0d 2997374 0c76a0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
#!/usr/bin/env python
# coding: utf-8
# In[17]:
import pickle
from PIL import Image
import numpy as np
import gradio as gr
from pathlib import Path
from transformers import pipeline
from tensorflow.keras.models import load_model
import tensorflow as tf
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from dotenv import load_dotenv
import openai
import os
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
# Set the model's file path
file_path = Path("models/model_adam_5.h5")
# Load the model to a new object
adam_5 = tf.keras.models.load_model(file_path)
# Load env variables
load_dotenv()
# Add your OpenAI API key here
openai_api_key = os.getenv("OPENAI_API_KEY")
print(f"OpenAI API Key Loaded: {openai_api_key is not None}")
# Load the model and tokenizer for translation
model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
# Set source language
tokenizer.src_lang = "en_XX"
# Constants
# Language information MBart
language_info = [
"English (en_XX)",
"Arabic (ar_AR)",
"Czech (cs_CZ)",
"German (de_DE)",
"Spanish (es_XX)",
"Estonian (et_EE)",
"Finnish (fi_FI)",
"French (fr_XX)",
"Gujarati (gu_IN)",
"Hindi (hi_IN)",
"Italian (it_IT)",
"Japanese (ja_XX)",
"Kazakh (kk_KZ)",
"Korean (ko_KR)",
"Lithuanian (lt_LT)",
"Latvian (lv_LV)",
"Burmese (my_MM)",
"Nepali (ne_NP)",
"Dutch (nl_XX)",
"Romanian (ro_RO)",
"Russian (ru_RU)",
"Sinhala (si_LK)",
"Turkish (tr_TR)",
"Vietnamese (vi_VN)",
"Chinese (zh_CN)",
"Afrikaans (af_ZA)",
"Azerbaijani (az_AZ)",
"Bengali (bn_IN)",
"Persian (fa_IR)",
"Hebrew (he_IL)",
"Croatian (hr_HR)",
"Indonesian (id_ID)",
"Georgian (ka_GE)",
"Khmer (km_KH)",
"Macedonian (mk_MK)",
"Malayalam (ml_IN)",
"Mongolian (mn_MN)",
"Marathi (mr_IN)",
"Polish (pl_PL)",
"Pashto (ps_AF)",
"Portuguese (pt_XX)",
"Swedish (sv_SE)",
"Swahili (sw_KE)",
"Tamil (ta_IN)",
"Telugu (te_IN)",
"Thai (th_TH)",
"Tagalog (tl_XX)",
"Ukrainian (uk_UA)",
"Urdu (ur_PK)",
"Xhosa (xh_ZA)",
"Galician (gl_ES)",
"Slovene (sl_SI)",
]
# Convert the information into a dictionary
language_dict = {}
for info in language_info:
name, code = info.split(" (")
code = code[:-1]
language_dict[name] = code
# Get the language names for choices in the dropdown
languages = list(language_dict.keys())
first_language = languages[0]
sorted_languages = sorted(languages[1:])
sorted_languages.insert(0, first_language)
default_language = "English"
# Prediction responses
malignant_text = "Malignant. Please consult a doctor for further evaluation."
benign_text = "Benign. Please consult a doctor for further evaluation."
# Create instance
llm = ChatOpenAI(
openai_api_key=openai_api_key, model_name="gpt-3.5-turbo", temperature=0
)
# Method to get system and human messages for ChatOpenAI - Predictions
def get_prediction_messages(prediction_text):
# Create a HumanMessage object
human_message = HumanMessage(content=f"skin lesion that appears {prediction_text}")
# Get the system message
system_message = SystemMessage(
content="You are a medical professional chatting with a patient. You want to provide helpful information and give a preliminary assessment."
)
# Return the system message
return [system_message, human_message]
# Method to get system and human messages for ChatOpenAI - Help
def get_chat_messages(chat_prompt):
# Create a HumanMessage object
human_message = HumanMessage(content=chat_prompt)
# Get the system message
system_message = SystemMessage(
content="You are a medical professional chatting with a patient. You want to provide helpful information."
)
# Return the system message
return [system_message, human_message]
# Method to predict the image
def predict_image(language, img):
try:
try:
# Process the image
img = img.resize((224, 224))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
except Exception as e:
print(f"Error: {e}")
return "There was an error processing the image. Please try again."
# Get prediction from model
prediction = adam_5.predict(img_array)
text_prediction = "Malignant" if prediction[0][0] > 0.5 else "Benign"
try:
# Get the system and human messages
messages = get_prediction_messages(text_prediction)
# Get the response from ChatOpenAI
result = llm(messages)
# Get the text prediction
text_prediction = (
f"Prediction: {text_prediction} Explanation: {result.content}"
)
except Exception as e:
print(f"Error: {e}")
print(f"Prediction: {text_prediction}")
text_prediction = (
malignant_text if text_prediction == "Malignant" else benign_text
)
# Get selected language code
selected_code = language_dict[language]
# Check if the target and source languages are the same
if selected_code == "en_XX":
return (
text_prediction,
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
try:
# Encode, generate tokens, decode the prediction
encoded_text = tokenizer(text_prediction, return_tensors="pt")
generated_tokens = model.generate(
**encoded_text,
forced_bos_token_id=tokenizer.lang_code_to_id[selected_code],
)
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Return the result
return (
result[0],
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
except Exception as e:
print(f"Error: {e}")
return (
f"""There was an error processing the translation.
In English:
{text_prediction}
""",
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
except Exception as e:
print(f"Error: {e}")
return (
"There was an error processing the request. Please try again.",
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
# Method for on submit
def on_submit(language, img):
print(f"Language: {language}")
if language is None or len(language) == 0:
language = default_language
if img is None:
return (
"No image uploaded. Please try again.",
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
return predict_image(language, img)
# Method for on clear
def on_clear():
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(visible=True),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(visible=False),
)
# Method for on chat
def on_chat(language, chat_prompt):
try:
# Get the system and human messages
messages = get_chat_messages(chat_prompt)
# Get the response from ChatOpenAI
result = llm(messages)
# Get the text prediction
chat_response = result.content
except Exception as e:
print(f"Error: {e}")
return gr.update(
value="There was an error processing your question. Please try again.",
visible=True,
), gr.update(visible=False)
# Get selected language code
if language is None or len(language) == 0:
language = default_language
selected_code = language_dict[language]
# Check if the target and source languages are the same
if selected_code == "en_XX":
return gr.update(value=chat_response, visible=True), gr.update(visible=False)
try:
# Encode, generate tokens, decode the prediction
encoded_text = tokenizer(chat_response, return_tensors="pt")
generated_tokens = model.generate(
**encoded_text, forced_bos_token_id=tokenizer.lang_code_to_id[selected_code]
)
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Return the result
return gr.update(value=result[0], visible=True), gr.update(visible=False)
except Exception as e:
print(f"Error: {e}")
return (
gr.update(
value=f"""There was an error processing the translation.
In English:
{chat_response}
""",
visible=True,
),
gr.update(visible=False),
)
# Gradio app
with gr.Blocks(theme=gr.themes.Default(primary_hue="green")) as demo:
intro = gr.Markdown(
"""
# Welcome to Skin Lesion Image Classifier!
Select prediction language and upload image to start.
"""
)
language = gr.Dropdown(
label="Response Language - Default English", choices=sorted_languages
)
img = gr.Image(image_mode="RGB", type="pil")
output = gr.Textbox(label="Results", show_copy_button=True)
chat_prompt = gr.Textbox(
label="Do you have a question about the results or skin cancer?",
placeholder="Enter your question here...",
visible=False,
)
chat_response = gr.Textbox(
label="Chat Response", visible=False, show_copy_button=True
)
submit_btn = gr.Button("Submit", variant="primary", visible=True)
chat_btn = gr.Button("Submit Question", variant="primary", visible=False)
submit_btn.click(
fn=on_submit,
inputs=[language, img],
outputs=[output, submit_btn, chat_prompt, chat_btn, chat_response],
)
chat_btn.click(
fn=on_chat, inputs=[language, chat_prompt], outputs=[chat_response, chat_btn]
)
clear_btn = gr.ClearButton(
components=[language, img, output, chat_response], variant="stop"
)
clear_btn.click(
fn=on_clear,
outputs=[
language,
img,
output,
submit_btn,
chat_prompt,
chat_response,
chat_btn,
],
)
if __name__ == "__main__":
demo.launch(share=True)
|