Spaces:
Running
Running
| import argparse | |
| from concurrent.futures import ThreadPoolExecutor | |
| import torch | |
| import torch.multiprocessing as mp | |
| from tqdm import tqdm | |
| from config import get_config | |
| from style_bert_vits2.constants import Languages | |
| from style_bert_vits2.logging import logger | |
| from style_bert_vits2.models import commons | |
| from style_bert_vits2.models.hyper_parameters import HyperParameters | |
| from style_bert_vits2.nlp import cleaned_text_to_sequence, extract_bert_feature | |
| from style_bert_vits2.nlp.japanese import pyopenjtalk_worker | |
| from style_bert_vits2.nlp.japanese.user_dict import update_dict | |
| from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT | |
| config = get_config() | |
| # このプロセスからはワーカーを起動して辞書を使いたいので、ここで初期化 | |
| pyopenjtalk_worker.initialize_worker() | |
| # dict_data/ 以下の辞書データを pyopenjtalk に適用 | |
| update_dict() | |
| def process_line(x: tuple[str, bool]): | |
| line, add_blank = x | |
| device = config.bert_gen_config.device | |
| if config.bert_gen_config.use_multi_device: | |
| rank = mp.current_process()._identity | |
| rank = rank[0] if len(rank) > 0 else 0 | |
| if torch.cuda.is_available(): | |
| gpu_id = rank % torch.cuda.device_count() | |
| device = f"cuda:{gpu_id}" | |
| else: | |
| device = "cpu" | |
| wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|") | |
| phone = phones.split(" ") | |
| tone = [int(i) for i in tone.split(" ")] | |
| word2ph = [int(i) for i in word2ph.split(" ")] | |
| word2ph = [i for i in word2ph] | |
| phone, tone, language = cleaned_text_to_sequence( | |
| phone, tone, Languages[language_str] | |
| ) | |
| if add_blank: | |
| phone = commons.intersperse(phone, 0) | |
| tone = commons.intersperse(tone, 0) | |
| language = commons.intersperse(language, 0) | |
| for i in range(len(word2ph)): | |
| word2ph[i] = word2ph[i] * 2 | |
| word2ph[0] += 1 | |
| bert_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".bert.pt") | |
| try: | |
| bert = torch.load(bert_path) | |
| assert bert.shape[-1] == len(phone) | |
| except Exception: | |
| bert = extract_bert_feature(text, word2ph, Languages(language_str), device) | |
| assert bert.shape[-1] == len(phone) | |
| torch.save(bert, bert_path) | |
| preprocess_text_config = config.preprocess_text_config | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-c", "--config", type=str, default=config.bert_gen_config.config_path | |
| ) | |
| args, _ = parser.parse_known_args() | |
| config_path = args.config | |
| hps = HyperParameters.load_from_json(config_path) | |
| lines: list[str] = [] | |
| with open(hps.data.training_files, encoding="utf-8") as f: | |
| lines.extend(f.readlines()) | |
| with open(hps.data.validation_files, encoding="utf-8") as f: | |
| lines.extend(f.readlines()) | |
| add_blank = [hps.data.add_blank] * len(lines) | |
| if len(lines) != 0: | |
| # pyopenjtalkの別ワーカー化により、並列処理でエラーがでる模様なので、一旦シングルスレッド強制にする | |
| num_processes = 1 | |
| with ThreadPoolExecutor(max_workers=num_processes) as executor: | |
| _ = list( | |
| tqdm( | |
| executor.map(process_line, zip(lines, add_blank)), | |
| total=len(lines), | |
| file=SAFE_STDOUT, | |
| ) | |
| ) | |
| logger.info(f"bert.pt is generated! total: {len(lines)} bert.pt files.") | |