aloe-vera's picture
leaderboard v1
73adc36 verified
raw
history blame
12 kB
import gradio as gr
import pandas as pd
from pathlib import Path
import plotly.express as px
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import base64
def restart_space():
API.restart_space(repo_id=REPO_ID)
def make_rate_chart(df: pd.DataFrame):
"""Return a Plotly bar chart of hallucination rates."""
# long-form dataframe for grouped bars
df_long = df.melt(
id_vars="Models",
value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
var_name="Benchmark",
value_name="Rate",
)
fig = px.bar(
df_long,
x="Models",
y="Rate",
color="Benchmark",
barmode="group",
title="Hallucination Rates by Model",
height=400,
)
fig.update_layout(xaxis_title="", yaxis_title="%")
return fig
def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
"""
Return a horizontal bar chart sorted ascending by `col`.
Lowest value (best) at the top.
"""
df_sorted = df.sort_values(col, ascending=False) # best β†’ worst
fig = px.bar(
df_sorted,
x=col,
y="Models",
orientation="h",
title=title,
text_auto=".2f",
height=400,
color_discrete_sequence=[bar_color],
)
fig.update_traces(textposition="outside", cliponaxis=False)
fig.update_layout(
xaxis_title="Hallucination Rate (%)",
yaxis_title="",
yaxis=dict(dtick=1), # ensure every model shown
margin=dict(l=140, r=60, t=60, b=40)
)
fig.update_traces(textposition="outside")
return fig
def color_scale(s, cmap):
"""
Return background-colour styles for a numeric Series (lower = greener,
higher = redder). Works with any palette length.
"""
colours = px.colors.sequential.__dict__[cmap]
n = len(colours) - 1 # max valid index
rng = s.max() - s.min()
norm = (s - s.min()) / (rng if rng else 1)
return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
# restart_space()
print(f"[WARN] Skipping RESULTS sync: {e}")
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
# restart_space()
print(f"[WARN] Skipping RESULTS sync: {e}")
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(df: pd.DataFrame):
if df is None or df.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=df,
datatype=["markdown", "markdown", "number", "number", "number"],
select_columns=SelectColumns(
default_selection=[
"Rank", "Models",
"Average Hallucination Rate (%)",
"RAG Hallucination Rate (%)",
"Non-RAG Hallucination Rate (%)"
],
cant_deselect=["Models", "Rank"],
label="Select Columns to Display:",
),
search_columns=["Models"],
# column_widths=["3%"],
bool_checkboxgroup_label=None,
interactive=False,
)
image_path = "static/kluster-color.png"
with open(image_path, "rb") as img_file:
b64_string = base64.b64encode(img_file.read()).decode("utf-8")
# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(f"""
<div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">
<img src="data:image/png;base64,{b64_string}" alt="KlusterAI logo" style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />
<div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em;">
LLM Hallucination Detection <span style="color: #0057ff;">Leaderboard</span>
</div>
<div style="font-size: 1.5em; color: #444; margin-top: 0.5em;">
Evaluating factual accuracy and faithfulness of LLMs in both RAG and real-world knowledge settings with
<a href="https://platform.kluster.ai/verify" target="_blank" style="color: #0057ff; text-decoration: none;">
Verify
</a> by
<a href="https://platform.kluster.ai/" target="_blank" style="color: #0057ff; text-decoration: none;">
KlusterAI
</a>
</div>
</div>
""")
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Hallucination Benchmark", elem_id="llm-benchmark-tab-table", id=0):
# ---------- Chart ----------
with gr.Row():
gr.Plot(
make_leaderboard_plot(
LEADERBOARD_DF,
"RAG Hallucination Rate (%)",
"RAG Hallucination Rate (lower is better)",
bar_color="#4CAF50",
),
show_label=False,
)
gr.Plot(
make_leaderboard_plot(
LEADERBOARD_DF,
"Non-RAG Hallucination Rate (%)",
"Non-RAG Hallucination Rate (lower is better)",
bar_color="#FF7043",
),
show_label=False,
)
# ---------- Leaderboard ----------
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ Document", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown((Path(__file__).parent / "docs.md").read_text())
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown((Path(__file__).parent / "submit.md").read_text())
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
# with gr.Row():
# with gr.Accordion("πŸ“™ Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()