Ryan McConville
tweaks to layout and text
db0d8a2
raw
history blame
14.9 kB
import gradio as gr
import pandas as pd
from pathlib import Path
import plotly.express as px
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import textwrap
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_rag_leaderboard_df
from src.submission.submit import add_new_eval
import base64
def restart_space():
API.restart_space(repo_id=REPO_ID)
def make_rate_chart(df: pd.DataFrame):
"""Return a Plotly bar chart of hallucination rates."""
# long-form dataframe for grouped bars
df_long = df.melt(
id_vars="Models",
value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
var_name="Benchmark",
value_name="Rate",
)
fig = px.bar(
df_long,
x="Models",
y="Rate",
color="Benchmark",
barmode="group",
title="Hallucination Rates by Model",
height=400,
)
fig.update_layout(xaxis_title="", yaxis_title="%")
return fig
def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
df_sorted = df.sort_values(col, ascending=False)
fig = px.bar(
df_sorted,
x=col,
y="Models",
orientation="h",
title=title,
text_auto=".2f",
height=400,
color_discrete_sequence=[bar_color],
)
fig.update_traces(textposition="outside", cliponaxis=False)
fig.update_layout(
xaxis_title="Hallucination Rate (%)",
yaxis_title="",
yaxis=dict(dtick=1), # ensure every model shown
margin=dict(l=140, r=60, t=60, b=40)
)
fig.update_traces(textposition="outside")
return fig
def make_rag_average_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
rag_cols = [
"Context in System Prompt (%)",
"Context and Question Single-Turn (%)",
"Context and Question Two-Turns (%)",
]
df_plot = df.copy()
if col not in df_plot.columns:
df_plot[col] = df_plot[rag_cols].mean(axis=1, skipna=True).round(2)
df_plot["Std Dev"] = df_plot[rag_cols].std(axis=1, skipna=True).round(2)
df_sorted = df_plot.sort_values(col, ascending=False)
fig = px.bar(
df_sorted,
x=col,
y="Models",
orientation="h",
title=title,
height=400,
color_discrete_sequence=[bar_color],
error_x="Std Dev",
)
fig.update_traces(
texttemplate="%{x:.2f}",
textposition="inside",
insidetextanchor="middle",
cliponaxis=False,
)
fig.update_layout(
xaxis_title="Hallucination Rate (%)",
yaxis_title="",
yaxis=dict(dtick=1),
margin=dict(l=140, r=60, t=60, b=40),
)
return fig
def make_rag_method_average_plot(df: pd.DataFrame, title: str, bar_color: str):
method_cols = [
"Context in System Prompt (%)",
"Context and Question Single-Turn (%)",
"Context and Question Two-Turns (%)",
]
averages = df[method_cols].mean().round(2)
stds = df[method_cols].std().round(2)
avg_df = pd.DataFrame(
{
"RAG Method": averages.index,
"Average Hallucination Rate (%)": averages.values,
"Std Dev": stds.values,
}
)
fig = px.bar(
avg_df,
x="RAG Method",
y="Average Hallucination Rate (%)",
error_y="Std Dev",
title=title,
height=400,
color_discrete_sequence=[bar_color],
)
fig.update_traces(
texttemplate="%{y:.2f}" if 'orientation' not in fig.data[0] or fig.data[0].orientation == 'v' else "%{x:.2f}",
textposition="inside",
insidetextanchor="start",
cliponaxis=False,
textfont_color="white",
)
labels_map = {
"Context in System Prompt (%)": "Context in<br>System Prompt",
"Context and Question Single-Turn (%)": "Context & Question<br>Single-Turn",
"Context and Question Two-Turns (%)": "Context & Question<br>Two-Turns",
}
fig.update_xaxes(
tickmode="array",
tickvals=list(labels_map.keys()),
ticktext=list(labels_map.values()),
tickangle=0,
automargin=True,
)
fig.update_layout(
xaxis_title="",
yaxis_title="Hallucination Rate (%)",
margin=dict(l=40, r=100, t=60, b=120),
)
return fig
def color_scale(s, cmap):
"""
Return background-colour styles for a numeric Series (lower = greener,
higher = redder). Works with any palette length.
"""
colours = px.colors.sequential.__dict__[cmap]
n = len(colours) - 1 # max valid index
rng = s.max() - s.min()
norm = (s - s.min()) / (rng if rng else 1)
return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
# restart_space()
print(f"[WARN] Skipping RESULTS sync: {Exception}")
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
# restart_space()
print(f"[WARN] Skipping RESULTS sync: {Exception}")
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
RAG_DF = get_rag_leaderboard_df("leaderboard/data/rag_methods_compare.csv")
def init_leaderboard(df: pd.DataFrame):
if df is None or df.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=df,
datatype=["markdown", "markdown", "number", "number", "number"],
select_columns=SelectColumns(
default_selection=[
"Rank", "Models",
"Average Hallucination Rate (%)",
"RAG Hallucination Rate (%)",
"Non-RAG Hallucination Rate (%)"
],
cant_deselect=["Models", "Rank"],
label="Select Columns to Display:",
),
search_columns=["Models"],
# column_widths=["3%"],
bool_checkboxgroup_label=None,
interactive=False,
height=800
)
image_path = "static/kluster-color.png"
with open(image_path, "rb") as img_file:
b64_string = base64.b64encode(img_file.read()).decode("utf-8")
# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(f"""
<div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">
<img src="data:image/png;base64,{b64_string}" alt="kluster.ai logo"
style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />
<div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em; color: var(--text-color);">
LLM Hallucination Detection Leaderboard
</div>
<div style="font-size: 1.5em; margin-top: 0.5em;">
Evaluating factual accuracy and faithfulness of LLMs in both RAG and non-RAG settings with
<a href="https://platform.kluster.ai/verify" target="_blank">
Verify
</a> by
<a href="https://kluster.ai/" target="_blank">
kluster.ai
</a> which provides an API for detecting hallucinations with any model.
</div>
</div>
""")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Hallucination Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# ---------- Chart ----------
with gr.Row():
with gr.Column():
gr.Plot(
make_leaderboard_plot(
LEADERBOARD_DF,
"RAG Hallucination Rate (%)",
"RAG Hallucination Rate (lower is better)",
bar_color="#4CAF50",
),
show_label=False,
)
gr.Markdown("*HaluEval-QA benchmark (RAG): The model receives a question plus supporting context. We report the % of answers that introduce facts not found in that context β€” lower is better. See the **Methodology** section below for more information.*", elem_classes="plot-caption")
with gr.Column():
gr.Plot(
make_leaderboard_plot(
LEADERBOARD_DF,
"Non-RAG Hallucination Rate (%)",
"Non-RAG Hallucination Rate (lower is better)",
bar_color="#FF7043",
),
show_label=False,
)
gr.Markdown("*UltraChat benchmark (~11 k prompts, non-RAG): Evaluates open-domain answers when only the question is given. Score is the % of hallucinated responses β€” lower is better. See the **Methodology** section below for more information.*", elem_classes="plot-caption")
# ---------- Leaderboard ----------
leaderboard = init_leaderboard(LEADERBOARD_DF)
# ---------- Get Started with Verify ----------
verify_markdown = (Path(__file__).parent / "verify.md").read_text()
gr.Markdown(verify_markdown, elem_classes="markdown-text")
code_example_reliability = textwrap.dedent(
r"""curl -X POST https://api.kluster.ai/v1/verify/reliability \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"prompt": "Tell me about the new iPhone 20 features",
"output": "The iPhone 20 includes a revolutionary holographic display, 200MP camera with AI scene detection, and can project 3D holograms up to 6 feet away for video calls.",
"context": null
}'"""
)
gr.Code(code_example_reliability, language="shell")
code_example_chat = textwrap.dedent(
r"""curl -X POST https://api.kluster.ai/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "klusterai/verify-reliability",
"messages": [
{ "role": "user", "content": "What can you tell me about Milos Burger Joint?" },
{ "role": "assistant", "content": "Milos Burger Joint has been serving authentic Burgers cuisine since 1999 and just won 2 Michelin stars last week, making it the highest-rated burger restaurant in the city." }
]
}'"""
)
gr.Code(code_example_chat, language="shell")
with gr.Accordion("πŸ“„ Methodology & Benchmark Details", open=True):
gr.Markdown((Path(__file__).parent / "docs.md").read_text(), elem_classes="markdown-text")
with gr.TabItem("πŸ§ͺ RAG Techniques and Hallucinations", elem_id="llm-benchmark-tab-table", id=2):
rag_intro_markdown = (Path(__file__).parent / "rag_techniques_intro.md").read_text()
rag_details_markdown = (Path(__file__).parent / "rag_techniques_details.md").read_text()
gr.Markdown(rag_intro_markdown, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Plot(
make_rag_method_average_plot(
RAG_DF,
"Average Hallucination Rate by RAG Method (lower is better)",
bar_color="#4CAF50",
),
show_label=False,
)
gr.Markdown(
"*Mean hallucination rate for each RAG prompting strategy across all models on the HaluEval-QA benchmark. Error bars represent Β±1 SD; lower is better.*",
elem_classes="plot-caption",
)
with gr.Column():
gr.Plot(
make_rag_average_plot(
RAG_DF,
"Average Hallucination Rate (%)",
"Average Hallucination Rate per Model (lower is better)",
bar_color="#2196F3",
),
show_label=False,
)
gr.Markdown(
"*Mean hallucination rate across the three RAG prompting settings for each individual model. Error bars show Β±1 SD across the three strategies; lower is better.*",
elem_classes="plot-caption",
)
rag_leaderboard = Leaderboard(
value=RAG_DF,
datatype=["markdown", "number", "number", "number"],
select_columns=SelectColumns(
default_selection=[
"Models",
"Context in System Prompt (%)",
"Context and Question Single-Turn (%)",
"Context and Question Two-Turns (%)",
],
cant_deselect=["Models"],
label="Select RAG Method Columns:",
),
search_columns=["Models"],
bool_checkboxgroup_label=None,
interactive=False,
height=700
)
with gr.Accordion("πŸ“„ RAG Techniques & Benchmark Details", open=True):
gr.Markdown(rag_details_markdown, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit Here! ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown((Path(__file__).parent / "submit.md").read_text(), elem_classes="markdown-text")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(show_api=False)