Update app.py
Browse files
app.py
CHANGED
@@ -1,317 +1,317 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
from pathlib import Path
|
4 |
-
import plotly.express as px
|
5 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
6 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
-
from huggingface_hub import snapshot_download
|
8 |
-
|
9 |
-
from src.about import (
|
10 |
-
CITATION_BUTTON_LABEL,
|
11 |
-
CITATION_BUTTON_TEXT,
|
12 |
-
EVALUATION_QUEUE_TEXT,
|
13 |
-
INTRODUCTION_TEXT,
|
14 |
-
LLM_BENCHMARKS_TEXT,
|
15 |
-
TITLE,
|
16 |
-
)
|
17 |
-
from src.display.css_html_js import custom_css
|
18 |
-
from src.display.utils import (
|
19 |
-
BENCHMARK_COLS,
|
20 |
-
COLS,
|
21 |
-
EVAL_COLS,
|
22 |
-
EVAL_TYPES,
|
23 |
-
AutoEvalColumn,
|
24 |
-
ModelType,
|
25 |
-
fields,
|
26 |
-
WeightType,
|
27 |
-
Precision
|
28 |
-
)
|
29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
-
from src.submission.submit import add_new_eval
|
32 |
-
import base64
|
33 |
-
|
34 |
-
|
35 |
-
def restart_space():
|
36 |
-
API.restart_space(repo_id=REPO_ID)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
def make_rate_chart(df: pd.DataFrame):
|
41 |
-
"""Return a Plotly bar chart of hallucination rates."""
|
42 |
-
# long-form dataframe for grouped bars
|
43 |
-
df_long = df.melt(
|
44 |
-
id_vars="Models",
|
45 |
-
value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
|
46 |
-
var_name="Benchmark",
|
47 |
-
value_name="Rate",
|
48 |
-
)
|
49 |
-
fig = px.bar(
|
50 |
-
df_long,
|
51 |
-
x="Models",
|
52 |
-
y="Rate",
|
53 |
-
color="Benchmark",
|
54 |
-
barmode="group",
|
55 |
-
title="Hallucination Rates by Model",
|
56 |
-
height=400,
|
57 |
-
)
|
58 |
-
fig.update_layout(xaxis_title="", yaxis_title="%")
|
59 |
-
return fig
|
60 |
-
|
61 |
-
def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
|
62 |
-
"""
|
63 |
-
Return a horizontal bar chart sorted ascending by `col`.
|
64 |
-
Lowest value (best) at the top.
|
65 |
-
"""
|
66 |
-
df_sorted = df.sort_values(col, ascending=False) # best β worst
|
67 |
-
fig = px.bar(
|
68 |
-
df_sorted,
|
69 |
-
x=col,
|
70 |
-
y="Models",
|
71 |
-
orientation="h",
|
72 |
-
title=title,
|
73 |
-
text_auto=".2f",
|
74 |
-
height=400,
|
75 |
-
color_discrete_sequence=[bar_color],
|
76 |
-
)
|
77 |
-
fig.update_traces(textposition="outside", cliponaxis=False)
|
78 |
-
|
79 |
-
fig.update_layout(
|
80 |
-
xaxis_title="Hallucination Rate (%)",
|
81 |
-
yaxis_title="",
|
82 |
-
yaxis=dict(dtick=1), # ensure every model shown
|
83 |
-
margin=dict(l=140, r=60, t=60, b=40)
|
84 |
-
)
|
85 |
-
fig.update_traces(textposition="outside")
|
86 |
-
return fig
|
87 |
-
|
88 |
-
|
89 |
-
def color_scale(s, cmap):
|
90 |
-
"""
|
91 |
-
Return background-colour styles for a numeric Series (lower = greener,
|
92 |
-
higher = redder). Works with any palette length.
|
93 |
-
"""
|
94 |
-
colours = px.colors.sequential.__dict__[cmap]
|
95 |
-
n = len(colours) - 1 # max valid index
|
96 |
-
|
97 |
-
rng = s.max() - s.min()
|
98 |
-
norm = (s - s.min()) / (rng if rng else 1)
|
99 |
-
|
100 |
-
return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]
|
101 |
-
|
102 |
-
|
103 |
-
### Space initialisation
|
104 |
-
try:
|
105 |
-
print(EVAL_REQUESTS_PATH)
|
106 |
-
snapshot_download(
|
107 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
108 |
-
)
|
109 |
-
except Exception:
|
110 |
-
# restart_space()
|
111 |
-
print(f"[WARN] Skipping RESULTS sync: {Exception}")
|
112 |
-
try:
|
113 |
-
print(EVAL_RESULTS_PATH)
|
114 |
-
snapshot_download(
|
115 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
116 |
-
)
|
117 |
-
except Exception:
|
118 |
-
# restart_space()
|
119 |
-
print(f"[WARN] Skipping RESULTS sync: {Exception}")
|
120 |
-
|
121 |
-
|
122 |
-
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
123 |
-
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
|
124 |
-
|
125 |
-
# (
|
126 |
-
# finished_eval_queue_df,
|
127 |
-
# running_eval_queue_df,
|
128 |
-
# pending_eval_queue_df,
|
129 |
-
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
130 |
-
|
131 |
-
def init_leaderboard(df: pd.DataFrame):
|
132 |
-
if df is None or df.empty:
|
133 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
134 |
-
|
135 |
-
return Leaderboard(
|
136 |
-
value=df,
|
137 |
-
datatype=["markdown", "markdown", "number", "number", "number"],
|
138 |
-
select_columns=SelectColumns(
|
139 |
-
default_selection=[
|
140 |
-
"Rank", "Models",
|
141 |
-
"Average Hallucination Rate (%)",
|
142 |
-
"RAG Hallucination Rate (%)",
|
143 |
-
"Non-RAG Hallucination Rate (%)"
|
144 |
-
],
|
145 |
-
cant_deselect=["Models", "Rank"],
|
146 |
-
label="Select Columns to Display:",
|
147 |
-
),
|
148 |
-
search_columns=["Models"],
|
149 |
-
# column_widths=["3%"],
|
150 |
-
bool_checkboxgroup_label=None,
|
151 |
-
interactive=False,
|
152 |
-
)
|
153 |
-
|
154 |
-
image_path = "static/kluster-color.png"
|
155 |
-
with open(image_path, "rb") as img_file:
|
156 |
-
b64_string = base64.b64encode(img_file.read()).decode("utf-8")
|
157 |
-
|
158 |
-
|
159 |
-
# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
|
160 |
-
demo = gr.Blocks(css=custom_css)
|
161 |
-
with demo:
|
162 |
-
gr.HTML(f"""
|
163 |
-
<div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">
|
164 |
-
<img src="data:image/png;base64,{b64_string}" alt="kluster.ai logo"
|
165 |
-
style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />
|
166 |
-
|
167 |
-
<div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em; color: var(--text-color);">
|
168 |
-
LLM Hallucination Detection Leaderboard
|
169 |
-
</div>
|
170 |
-
|
171 |
-
<div style="font-size: 1.5em; margin-top: 0.5em;">
|
172 |
-
Evaluating factual accuracy and faithfulness of LLMs in both RAG and
|
173 |
-
<a href="https://platform.kluster.ai/verify" target="_blank">
|
174 |
-
Verify
|
175 |
-
</a> by
|
176 |
-
<a href="https://platform.kluster.ai/" target="_blank">
|
177 |
-
kluster.ai
|
178 |
-
</a>
|
179 |
-
</div>
|
180 |
-
</div>
|
181 |
-
""")
|
182 |
-
|
183 |
-
|
184 |
-
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
185 |
-
|
186 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
187 |
-
with gr.TabItem("π
Hallucination Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
188 |
-
# ---------- Chart ----------
|
189 |
-
with gr.Row():
|
190 |
-
gr.Plot(
|
191 |
-
make_leaderboard_plot(
|
192 |
-
LEADERBOARD_DF,
|
193 |
-
"RAG Hallucination Rate (%)",
|
194 |
-
"RAG Hallucination Rate (lower is better)",
|
195 |
-
bar_color="#4CAF50",
|
196 |
-
),
|
197 |
-
show_label=False,
|
198 |
-
)
|
199 |
-
gr.Plot(
|
200 |
-
make_leaderboard_plot(
|
201 |
-
LEADERBOARD_DF,
|
202 |
-
"Non-RAG Hallucination Rate (%)",
|
203 |
-
"Non-RAG Hallucination Rate (lower is better)",
|
204 |
-
bar_color="#FF7043",
|
205 |
-
),
|
206 |
-
show_label=False,
|
207 |
-
)
|
208 |
-
|
209 |
-
# ---------- Leaderboard ----------
|
210 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
211 |
-
|
212 |
-
with gr.TabItem("π Details", elem_id="llm-benchmark-tab-table", id=2):
|
213 |
-
gr.Markdown((Path(__file__).parent / "docs.md").read_text())
|
214 |
-
|
215 |
-
with gr.TabItem("π Submit Here! ", elem_id="llm-benchmark-tab-table", id=3):
|
216 |
-
gr.Markdown((Path(__file__).parent / "submit.md").read_text())
|
217 |
-
|
218 |
-
# with gr.Column():
|
219 |
-
# with gr.Row():
|
220 |
-
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
221 |
-
|
222 |
-
# with gr.Column():
|
223 |
-
# with gr.Accordion(
|
224 |
-
# f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
225 |
-
# open=False,
|
226 |
-
# ):
|
227 |
-
# with gr.Row():
|
228 |
-
# finished_eval_table = gr.components.Dataframe(
|
229 |
-
# value=finished_eval_queue_df,
|
230 |
-
# headers=EVAL_COLS,
|
231 |
-
# datatype=EVAL_TYPES,
|
232 |
-
# row_count=5,
|
233 |
-
# )
|
234 |
-
# with gr.Accordion(
|
235 |
-
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
236 |
-
# open=False,
|
237 |
-
# ):
|
238 |
-
# with gr.Row():
|
239 |
-
# running_eval_table = gr.components.Dataframe(
|
240 |
-
# value=running_eval_queue_df,
|
241 |
-
# headers=EVAL_COLS,
|
242 |
-
# datatype=EVAL_TYPES,
|
243 |
-
# row_count=5,
|
244 |
-
# )
|
245 |
-
|
246 |
-
# with gr.Accordion(
|
247 |
-
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
248 |
-
# open=False,
|
249 |
-
# ):
|
250 |
-
# with gr.Row():
|
251 |
-
# pending_eval_table = gr.components.Dataframe(
|
252 |
-
# value=pending_eval_queue_df,
|
253 |
-
# headers=EVAL_COLS,
|
254 |
-
# datatype=EVAL_TYPES,
|
255 |
-
# row_count=5,
|
256 |
-
# )
|
257 |
-
# with gr.Row():
|
258 |
-
# gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
259 |
-
|
260 |
-
# with gr.Row():
|
261 |
-
# with gr.Column():
|
262 |
-
# model_name_textbox = gr.Textbox(label="Model name")
|
263 |
-
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
264 |
-
# model_type = gr.Dropdown(
|
265 |
-
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
266 |
-
# label="Model type",
|
267 |
-
# multiselect=False,
|
268 |
-
# value=None,
|
269 |
-
# interactive=True,
|
270 |
-
# )
|
271 |
-
|
272 |
-
# with gr.Column():
|
273 |
-
# precision = gr.Dropdown(
|
274 |
-
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
275 |
-
# label="Precision",
|
276 |
-
# multiselect=False,
|
277 |
-
# value="float16",
|
278 |
-
# interactive=True,
|
279 |
-
# )
|
280 |
-
# weight_type = gr.Dropdown(
|
281 |
-
# choices=[i.value.name for i in WeightType],
|
282 |
-
# label="Weights type",
|
283 |
-
# multiselect=False,
|
284 |
-
# value="Original",
|
285 |
-
# interactive=True,
|
286 |
-
# )
|
287 |
-
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
288 |
-
|
289 |
-
# submit_button = gr.Button("Submit Eval")
|
290 |
-
# submission_result = gr.Markdown()
|
291 |
-
# submit_button.click(
|
292 |
-
# add_new_eval,
|
293 |
-
# [
|
294 |
-
# model_name_textbox,
|
295 |
-
# base_model_name_textbox,
|
296 |
-
# revision_name_textbox,
|
297 |
-
# precision,
|
298 |
-
# weight_type,
|
299 |
-
# model_type,
|
300 |
-
# ],
|
301 |
-
# submission_result,
|
302 |
-
# )
|
303 |
-
|
304 |
-
# with gr.Row():
|
305 |
-
# with gr.Accordion("π Citation", open=False):
|
306 |
-
# citation_button = gr.Textbox(
|
307 |
-
# value=CITATION_BUTTON_TEXT,
|
308 |
-
# label=CITATION_BUTTON_LABEL,
|
309 |
-
# lines=20,
|
310 |
-
# elem_id="citation-button",
|
311 |
-
# show_copy_button=True,
|
312 |
-
# )
|
313 |
-
|
314 |
-
scheduler = BackgroundScheduler()
|
315 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
316 |
-
scheduler.start()
|
317 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from pathlib import Path
|
4 |
+
import plotly.express as px
|
5 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
+
|
9 |
+
from src.about import (
|
10 |
+
CITATION_BUTTON_LABEL,
|
11 |
+
CITATION_BUTTON_TEXT,
|
12 |
+
EVALUATION_QUEUE_TEXT,
|
13 |
+
INTRODUCTION_TEXT,
|
14 |
+
LLM_BENCHMARKS_TEXT,
|
15 |
+
TITLE,
|
16 |
+
)
|
17 |
+
from src.display.css_html_js import custom_css
|
18 |
+
from src.display.utils import (
|
19 |
+
BENCHMARK_COLS,
|
20 |
+
COLS,
|
21 |
+
EVAL_COLS,
|
22 |
+
EVAL_TYPES,
|
23 |
+
AutoEvalColumn,
|
24 |
+
ModelType,
|
25 |
+
fields,
|
26 |
+
WeightType,
|
27 |
+
Precision
|
28 |
+
)
|
29 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
+
from src.submission.submit import add_new_eval
|
32 |
+
import base64
|
33 |
+
|
34 |
+
|
35 |
+
def restart_space():
|
36 |
+
API.restart_space(repo_id=REPO_ID)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def make_rate_chart(df: pd.DataFrame):
|
41 |
+
"""Return a Plotly bar chart of hallucination rates."""
|
42 |
+
# long-form dataframe for grouped bars
|
43 |
+
df_long = df.melt(
|
44 |
+
id_vars="Models",
|
45 |
+
value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
|
46 |
+
var_name="Benchmark",
|
47 |
+
value_name="Rate",
|
48 |
+
)
|
49 |
+
fig = px.bar(
|
50 |
+
df_long,
|
51 |
+
x="Models",
|
52 |
+
y="Rate",
|
53 |
+
color="Benchmark",
|
54 |
+
barmode="group",
|
55 |
+
title="Hallucination Rates by Model",
|
56 |
+
height=400,
|
57 |
+
)
|
58 |
+
fig.update_layout(xaxis_title="", yaxis_title="%")
|
59 |
+
return fig
|
60 |
+
|
61 |
+
def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
|
62 |
+
"""
|
63 |
+
Return a horizontal bar chart sorted ascending by `col`.
|
64 |
+
Lowest value (best) at the top.
|
65 |
+
"""
|
66 |
+
df_sorted = df.sort_values(col, ascending=False) # best β worst
|
67 |
+
fig = px.bar(
|
68 |
+
df_sorted,
|
69 |
+
x=col,
|
70 |
+
y="Models",
|
71 |
+
orientation="h",
|
72 |
+
title=title,
|
73 |
+
text_auto=".2f",
|
74 |
+
height=400,
|
75 |
+
color_discrete_sequence=[bar_color],
|
76 |
+
)
|
77 |
+
fig.update_traces(textposition="outside", cliponaxis=False)
|
78 |
+
|
79 |
+
fig.update_layout(
|
80 |
+
xaxis_title="Hallucination Rate (%)",
|
81 |
+
yaxis_title="",
|
82 |
+
yaxis=dict(dtick=1), # ensure every model shown
|
83 |
+
margin=dict(l=140, r=60, t=60, b=40)
|
84 |
+
)
|
85 |
+
fig.update_traces(textposition="outside")
|
86 |
+
return fig
|
87 |
+
|
88 |
+
|
89 |
+
def color_scale(s, cmap):
|
90 |
+
"""
|
91 |
+
Return background-colour styles for a numeric Series (lower = greener,
|
92 |
+
higher = redder). Works with any palette length.
|
93 |
+
"""
|
94 |
+
colours = px.colors.sequential.__dict__[cmap]
|
95 |
+
n = len(colours) - 1 # max valid index
|
96 |
+
|
97 |
+
rng = s.max() - s.min()
|
98 |
+
norm = (s - s.min()) / (rng if rng else 1)
|
99 |
+
|
100 |
+
return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]
|
101 |
+
|
102 |
+
|
103 |
+
### Space initialisation
|
104 |
+
try:
|
105 |
+
print(EVAL_REQUESTS_PATH)
|
106 |
+
snapshot_download(
|
107 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
108 |
+
)
|
109 |
+
except Exception:
|
110 |
+
# restart_space()
|
111 |
+
print(f"[WARN] Skipping RESULTS sync: {Exception}")
|
112 |
+
try:
|
113 |
+
print(EVAL_RESULTS_PATH)
|
114 |
+
snapshot_download(
|
115 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
116 |
+
)
|
117 |
+
except Exception:
|
118 |
+
# restart_space()
|
119 |
+
print(f"[WARN] Skipping RESULTS sync: {Exception}")
|
120 |
+
|
121 |
+
|
122 |
+
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
123 |
+
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
|
124 |
+
|
125 |
+
# (
|
126 |
+
# finished_eval_queue_df,
|
127 |
+
# running_eval_queue_df,
|
128 |
+
# pending_eval_queue_df,
|
129 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
130 |
+
|
131 |
+
def init_leaderboard(df: pd.DataFrame):
|
132 |
+
if df is None or df.empty:
|
133 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
134 |
+
|
135 |
+
return Leaderboard(
|
136 |
+
value=df,
|
137 |
+
datatype=["markdown", "markdown", "number", "number", "number"],
|
138 |
+
select_columns=SelectColumns(
|
139 |
+
default_selection=[
|
140 |
+
"Rank", "Models",
|
141 |
+
"Average Hallucination Rate (%)",
|
142 |
+
"RAG Hallucination Rate (%)",
|
143 |
+
"Non-RAG Hallucination Rate (%)"
|
144 |
+
],
|
145 |
+
cant_deselect=["Models", "Rank"],
|
146 |
+
label="Select Columns to Display:",
|
147 |
+
),
|
148 |
+
search_columns=["Models"],
|
149 |
+
# column_widths=["3%"],
|
150 |
+
bool_checkboxgroup_label=None,
|
151 |
+
interactive=False,
|
152 |
+
)
|
153 |
+
|
154 |
+
image_path = "static/kluster-color.png"
|
155 |
+
with open(image_path, "rb") as img_file:
|
156 |
+
b64_string = base64.b64encode(img_file.read()).decode("utf-8")
|
157 |
+
|
158 |
+
|
159 |
+
# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
|
160 |
+
demo = gr.Blocks(css=custom_css)
|
161 |
+
with demo:
|
162 |
+
gr.HTML(f"""
|
163 |
+
<div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">
|
164 |
+
<img src="data:image/png;base64,{b64_string}" alt="kluster.ai logo"
|
165 |
+
style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />
|
166 |
+
|
167 |
+
<div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em; color: var(--text-color);">
|
168 |
+
LLM Hallucination Detection Leaderboard
|
169 |
+
</div>
|
170 |
+
|
171 |
+
<div style="font-size: 1.5em; margin-top: 0.5em;">
|
172 |
+
Evaluating factual accuracy and faithfulness of LLMs in both RAG and non-RAG settings with
|
173 |
+
<a href="https://platform.kluster.ai/verify" target="_blank">
|
174 |
+
Verify
|
175 |
+
</a> by
|
176 |
+
<a href="https://platform.kluster.ai/" target="_blank">
|
177 |
+
kluster.ai
|
178 |
+
</a>
|
179 |
+
</div>
|
180 |
+
</div>
|
181 |
+
""")
|
182 |
+
|
183 |
+
|
184 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
185 |
+
|
186 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
187 |
+
with gr.TabItem("π
Hallucination Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
188 |
+
# ---------- Chart ----------
|
189 |
+
with gr.Row():
|
190 |
+
gr.Plot(
|
191 |
+
make_leaderboard_plot(
|
192 |
+
LEADERBOARD_DF,
|
193 |
+
"RAG Hallucination Rate (%)",
|
194 |
+
"RAG Hallucination Rate (lower is better)",
|
195 |
+
bar_color="#4CAF50",
|
196 |
+
),
|
197 |
+
show_label=False,
|
198 |
+
)
|
199 |
+
gr.Plot(
|
200 |
+
make_leaderboard_plot(
|
201 |
+
LEADERBOARD_DF,
|
202 |
+
"Non-RAG Hallucination Rate (%)",
|
203 |
+
"Non-RAG Hallucination Rate (lower is better)",
|
204 |
+
bar_color="#FF7043",
|
205 |
+
),
|
206 |
+
show_label=False,
|
207 |
+
)
|
208 |
+
|
209 |
+
# ---------- Leaderboard ----------
|
210 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
211 |
+
|
212 |
+
with gr.TabItem("π Details", elem_id="llm-benchmark-tab-table", id=2):
|
213 |
+
gr.Markdown((Path(__file__).parent / "docs.md").read_text())
|
214 |
+
|
215 |
+
with gr.TabItem("π Submit Here! ", elem_id="llm-benchmark-tab-table", id=3):
|
216 |
+
gr.Markdown((Path(__file__).parent / "submit.md").read_text())
|
217 |
+
|
218 |
+
# with gr.Column():
|
219 |
+
# with gr.Row():
|
220 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
221 |
+
|
222 |
+
# with gr.Column():
|
223 |
+
# with gr.Accordion(
|
224 |
+
# f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
225 |
+
# open=False,
|
226 |
+
# ):
|
227 |
+
# with gr.Row():
|
228 |
+
# finished_eval_table = gr.components.Dataframe(
|
229 |
+
# value=finished_eval_queue_df,
|
230 |
+
# headers=EVAL_COLS,
|
231 |
+
# datatype=EVAL_TYPES,
|
232 |
+
# row_count=5,
|
233 |
+
# )
|
234 |
+
# with gr.Accordion(
|
235 |
+
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
236 |
+
# open=False,
|
237 |
+
# ):
|
238 |
+
# with gr.Row():
|
239 |
+
# running_eval_table = gr.components.Dataframe(
|
240 |
+
# value=running_eval_queue_df,
|
241 |
+
# headers=EVAL_COLS,
|
242 |
+
# datatype=EVAL_TYPES,
|
243 |
+
# row_count=5,
|
244 |
+
# )
|
245 |
+
|
246 |
+
# with gr.Accordion(
|
247 |
+
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
248 |
+
# open=False,
|
249 |
+
# ):
|
250 |
+
# with gr.Row():
|
251 |
+
# pending_eval_table = gr.components.Dataframe(
|
252 |
+
# value=pending_eval_queue_df,
|
253 |
+
# headers=EVAL_COLS,
|
254 |
+
# datatype=EVAL_TYPES,
|
255 |
+
# row_count=5,
|
256 |
+
# )
|
257 |
+
# with gr.Row():
|
258 |
+
# gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
259 |
+
|
260 |
+
# with gr.Row():
|
261 |
+
# with gr.Column():
|
262 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
263 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
264 |
+
# model_type = gr.Dropdown(
|
265 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
266 |
+
# label="Model type",
|
267 |
+
# multiselect=False,
|
268 |
+
# value=None,
|
269 |
+
# interactive=True,
|
270 |
+
# )
|
271 |
+
|
272 |
+
# with gr.Column():
|
273 |
+
# precision = gr.Dropdown(
|
274 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
275 |
+
# label="Precision",
|
276 |
+
# multiselect=False,
|
277 |
+
# value="float16",
|
278 |
+
# interactive=True,
|
279 |
+
# )
|
280 |
+
# weight_type = gr.Dropdown(
|
281 |
+
# choices=[i.value.name for i in WeightType],
|
282 |
+
# label="Weights type",
|
283 |
+
# multiselect=False,
|
284 |
+
# value="Original",
|
285 |
+
# interactive=True,
|
286 |
+
# )
|
287 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
288 |
+
|
289 |
+
# submit_button = gr.Button("Submit Eval")
|
290 |
+
# submission_result = gr.Markdown()
|
291 |
+
# submit_button.click(
|
292 |
+
# add_new_eval,
|
293 |
+
# [
|
294 |
+
# model_name_textbox,
|
295 |
+
# base_model_name_textbox,
|
296 |
+
# revision_name_textbox,
|
297 |
+
# precision,
|
298 |
+
# weight_type,
|
299 |
+
# model_type,
|
300 |
+
# ],
|
301 |
+
# submission_result,
|
302 |
+
# )
|
303 |
+
|
304 |
+
# with gr.Row():
|
305 |
+
# with gr.Accordion("π Citation", open=False):
|
306 |
+
# citation_button = gr.Textbox(
|
307 |
+
# value=CITATION_BUTTON_TEXT,
|
308 |
+
# label=CITATION_BUTTON_LABEL,
|
309 |
+
# lines=20,
|
310 |
+
# elem_id="citation-button",
|
311 |
+
# show_copy_button=True,
|
312 |
+
# )
|
313 |
+
|
314 |
+
scheduler = BackgroundScheduler()
|
315 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
316 |
+
scheduler.start()
|
317 |
demo.queue(default_concurrency_limit=40).launch()
|